mill gears - Search Results

Articles About mill gears


Articles are sorted by RELEVANCE. Sort by Date.

1 Gear Material Selection and Construction for Large Gears (January/February 2013)

A road map is presented listing critical considerations and optimal use of materials and methods in the construction of large gears.

2 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

3 Delivering Big Gears Fast (May 2013)

When a customer needed gears delivered in three weeks, here’s how Brevini Wind got it done.

4 Untraditional Gear Machining (October 2013)

Look beyond the obvious, and you may well find a better way to machine a part, and serve your customer better. That’s the lesson illustrated in a gear machining application at Allied Specialty Precision Inc. (ASPI), located in Mishawaka, Indiana.

5 Progress in Gear Milling (January/February 2013)

Sandvik presents the latest in gear milling technologies.

6 Quality and Surface of Gears Manufactured by Free-Form Milling with Standard Tools (January/February 2015)

The recently available capability for the free-form milling of gears of various gear types and sizes — all within one manufacturing system — is becoming increasingly recognized as a flexible machining process for gears.

7 Gear Tooth Surface Roughness of Helical Gears Manufactured by a Form Milling Cutter (September/October 2015)

Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some special cases, such as small scale production and, the obvious, manufacture of internal gears. To manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the geometry of the form wheel is determined through inverse calculation. A mathematical model is presented where it is possible to determine the machined gear tooth surface in three dimensions, manufactured by this tool, taking the finite number of cutting edges into account. The model is validated by comparing calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.

8 An Approach to Pairing Bevel Gears from Conventional Cutting Machine with Gears Produced on 5-Axis Milling Machine (June 2015)

Developed here is a new method to automatically find the optimal topological modification from the predetermined measurement grid points for bevel gears. Employing this method enables the duplication of any flank form of a bevel gear given by the measurement points and the creation of a 3-D model for CAM machining in a very short time. This method not only allows the user to model existing flank forms into 3-D models, but also can be applied for various other purposes, such as compensating for hardening distortions and manufacturing deviations which are very important issues but not yet solved in the practical milling process.

9 Performance Analysis of Hypoid Gears by Tooth Flank Form Measurement (July/August 2002)

The traditional way of controlling the quality of hypoid gears' tooth flank form is to check the tooth flank contact patterns. But it is not easy to exactly judge the tooth flank form quality by the contact pattern. In recent years, it has become possible to accurately measure the tooth flank form of hypoid gears by the point-to-point measuring method and the scanning measuring method. But the uses of measured data of the tooth flank form for hypoid gears have not yet been well developed in comparison with cylindrical involute gears. In this paper, the tooth flank form measurement of generated face-milled gears, face-hobbed gears and formulate/generated gears are reported. The authors discuss the advantages and disadvantages of scanning and point-to-point measuring of 3-D tooth flank forms of hypoid gears and introduce some examples of uses of measured data for high-quality production and performance prediction.

10 Making it in Mobile (November/December 2014)

“If it’s broken, bring it on in.” That’s the advice offered by Roy Parker, president and owner of Jones Welding Company Inc.

11 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

12 Wind Energy, Old School Style (August 2007)

The Fabyan Windmill in Geneva, IL

13 Cutting Gears on a Machining Center (November/December 2009)

Depo provides all-in-one machining capabilities for the gear industry.

14 Gear Milling on Non-Gear Dedicated Machinery (July 2009)

Imagine the flexibility of having one machine capable of milling, turning, tapping and gear cutting with deburring included for hard and soft material. No, you’re not in gear fantasy land. The technology to manufacture gears on non gear-dedicated, mult-axis machines has existed for a few years in Europe, but has not yet ventured into mainstream manufacturing. Deckel Maho Pfronten, a member of the Gildemeister Group, took the sales plunge this year, making the technology available on most of its 2009 machines.

15 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

16 Writing the Standards (January/February 2011)

Gary A. Bish, director of product design technology for Horsburgh & Scott, discusses his role as chairman of the AGMA mill gearing committee.

17 Manufacturing Method of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System Using Multi-Axis Control and Multi-Tasking Machine Tool (August 2011)

In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.

18 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

19 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

20 Stock Distribution Optimization in Fixed Setting Hypoid Pinions (July/August 2001)

Face-milled hypoid pinions produced by the three-cut, Fixed Setting system - where roughing is done on one machine and finishing for the concave-OB and convex-IB tooth flanks is done on separate machines with different setups - are still in widespread use today.