net shape - Search Results

Articles About net shape

Articles are sorted by RELEVANCE. Sort by Date.

1 Long-Life, Low-cost, Near-Net-Shape forged Gears (May/June 1995)

Near-net gear forging today is producing longer life gears at significantly lower costs than traditional manufacturing techniques. Advances in forging equipment, controls and die-making capability have been combined to produce commercially viable near-net-shape gears in diameters up to 17" with minimum stock allowances. These forged gears require only minimal finishing to meet part tolerance specifications.

2 Powder Metal Gear Design and Inspection (September/October 1996)

Powder metallurgy (P/M) is a precision metal forming technology for the manufacture of parts to net or near-net shape, and it is particularly well-suited to the production of gears. Spur, bevel and helical gears all may be made by made by powder metallurgy processing.

3 Alternative Gear Manufacturing (July/August 1998)

the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.

4 Manufacturing Net-Shaped, Cold-Formed Gears (May 2008)

A net-shaped metal forming process has been developed for manufacturing quality, durable, high-yield and cost-efficient gears for high-volume production.

5 Gear Ratio Epicyclic Drives Analysis (June 2014)

It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.

6 Gear Shaping Machines CNC Developement (November/December 1985)

Up until approximately 1968-69, pinion cutter-type gear shaping machines had changed very little since their conception in the early 1900's.

7 Big Gears Better and Faster (January/February 2011)

Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.

8 Planet Carrier Design (January/February 2014)

With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?

9 Determining the Shaper Cut Helical Gear Fillet Profile (September/October 2006)

This article describes a root fillet form calculating method for a helical gear generated with a shaper cutter.

10 Magnetic Gears, Sleeping Giant or Toothless Tiger (November/December 2013)

When is a gear not a gear? Pardon my Zen, but that is a bit like asking, "What is the sound of one hand clapping?" Or there’s the old bromide, "If it walks like a duck, talks like a duck," etc. Just work with me here…

11 Magnetic Gearing Attracting More Followers (August 2013)

"Going green" and energy efficiency are goals that all industries -- especially in Europe and the United States -- are working on, in such sectors as electric motors, lubrication, gears and on and on. Drumroll here please for magnetic gearing

12 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

13 Gear Generating Using Rack Cutters (October/November 1984)

Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.

14 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

15 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

16 New Concepts in CNC Gear Shaping (July/August 1995)

In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.

17 Avoiding Interference In Shaper-Cut Gears (January/February 1996)

In the process of developing gear trains, it occasionally occurs that the tip of one gear will drag in the fillet of the mating gear. The first reaction may be to assume that the outside diameter of the gear is too large. This article is intended to show that although the gear dimensions follow AGMA guidelines, if the gear is cut with a shaper, the cutting process may not provide sufficient relief in the fillet area and be the cause of the interference.

18 Design Implications for Shaper Cutters (July/August 1996)

A gear shaper cutter is actually a gear with relieved cutting edges and increased addendum for providing clearance in the root of the gear being cut. The maximum outside diameter of such a cutter is limited to the diameter at which the teeth become pointed. The minimum diameter occurs when the outside diameter of the cutter and the base circle are the same. Those theoretical extremes, coupled with the side clearance, which is normally 2 degrees for coarse pitch cutters an d1.5 degrees for cutters approximately 24-pitch and finer, will determine the theoretical face width of a cutter.

19 Non-Involute Gearing, Function and Manufacturing Compared to Established Gear Designs (January/February 2015)

Introduction The standard profile form in cylindrical gears is an involute. Involutes are generated with a trapezoidal rack — the basis for easy and production-stable manufacturing (Fig. 1).

20 Innovative CNC Gear Shaping (January/February 1994)

The Shaping Process - A Quick Review of the Working Principle. In the shaping process, cutter and workpiece represent a drive with parallel axes rotating in mesh (generating motion) according to the number of teeth in both cutter and workpiece (Fig. 1), while the cutter reciprocates for the metal removal action (cutting motion).

21 New Cutting Tool Developments in Gear Shaping Technology (January/February 1993)

The advent of CNC technology as applied to gear shaping machines has, in the last 10 years, led to an astonishing improvement in both productivity and quality. As is usual when developments such as this take place, the technology of the machine tool suddenly jumps ahead of that of the cutting tool, and the machine is then capable of producing faster than the cutting tool can withstand.

22 Girth Gear Inspection - Pre- and Post-Manufacture (August 2013)

What are the ins-and-outs of quality inspection of girth gears, from both a manufacturer and buyer perspective? Our experts respond.

23 Runout, Helix Accuracy and Shaper Cutters (June/July 2012)

Our experts discuss runout and helix accuracy, as well as the maximum number of teeth in a shaper cutter.

24 Shaper Cutters - Design & Application - Part 2 (May/June 1990)

Cutter Sharpening Cutter sharpening is very important both during manufacturing and subsequently in resharpening after dulling. Not only does this process affect cutter "over cutting edge" quality and the quality of the part cut, but it can also affect the manner in which chip flow takes place on the cutter face if the surface finished is too rough or rippled.

25 Computer Aided Design for Gear Shaper Cutters (November/December 1987)

Computer programs have been developed to completely design spur and helical gear shaper cutters starting from the specifications of the gear to be cut and the type of gear shaper to be used. The programs generate the working drawing of the cutter and, through the use of a precision plotter, generate enlarge scaled layouts of the gear as produced by the cutter and any other layouts needed for its manufacture.

26 Stress of Planet Gears with Thin Rims (March/April 1994)

This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.

27 Reaching Out (March/April 2011)

Publisher Michael Goldstein describes the success of Gear Technology's new e-mail newsletter programs.

28 Analysis of Load Distribution in Planet Gear Bearings (September 2011)

In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.

29 A Logical Procedure To Determine Initial Gear Size (November/December 1986)

When a gear set is to be designed for a new application, the minimum size gears with the required capacity are desired. These gears must be capable of meeting the power, speed, ratio, life, and reliability requirements.

30 KHV Planetary Gearing (November/December 1987)

Traditionally, a worm or a multi-stage gear box has been used when a large speed ratio is required. However, such boxes will become obsolete as size and efficiency become increasingly important considerations for a modern transmission. The single-enveloped worm gear has a maximum speed ratio of only 40 to 60. Its efficiency is only 30 to 60 per cent. The necessity of using bronze for the worm gear and grinding nitoalloy steel for the worm drives up material and manufacturing costs.

31 A Planetary System that Increases Power Density (January/February 2005)

Turnkey Design Services is manufacturing a planetary gear system to increase power density.

32 Investigation of the Noise and Vibration of Planetary Gear Drives (January/February 2006)

With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.

33 Revolutions (January/February 2004)

"Magnetic Filtration" and "Better Blanking from Bar-Stock"

34 Industry Forum (November/December 1985)

One of the current research activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.

35 Siemens Plant Management 101 (May 2012)

Once upon a time there was a computer. This computer served as a conduit to waste a great deal of time through social networking and online video games. Still, there was always potential to turn these rather sedentary activities into something more positive and useful to mankind. Siemens may have stumbled upon such a concept.

36 Gear Failure Analysis Involving Grinding Burn (January/February 2009)

When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing process when control of the heat generation at the surface is lost.

37 KHV Planetary Gearing - Part II (January/February 1988)

Consisting of only a ring gear b meshing with one or two planets a, a carrier H and an equal velocity mechanism V, a KHV gearing(Fig. 1) is compact in structure, small in size and capable of providing a large speed ratio. For a single stage, its speed ratio can reach up to 200, and its size is approximately 1/4 that of a conventional multi-stage gear box.

38 The Elementary Theory for the Synthesis of Constant Direction Pointing Chariots (or Rotation Neutralizers) (November/December 1988)

The south-pointing chariot exhibited at the Smithsonian Institution, Washington, D.C., (circa 2600 BC)is shown in Fig. 1. Although the mechanism is ancient, it is by no means either primitive or simplistic. The pin-tooth gears drive a complex system, wherein the monk on the top of the chariot continues to point in a preset direction, no matter what direction the vehicle in moved, without a slip of the wheels.(1)

39 The Way of the Web (March/April 1997)

Okay. You've been convinced. You've gritted your teeth and decided to spend the money to launch a company Web site. Everybody from your teenage propeller-head to the girl in the mail room and the salesman in the flashy suit who gave you "such a deal" on Web site services has promised that your site will be the best thing that's happened to your business since the advent of CNC machines.

40 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

41 Effects of Planetary Gear Ratio on Mean Service Life (July/August 1998)

Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.

42 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

43 Internet Adventures, Part II (January/February 1997)

In July of 1996 we introduced the gear community to the Internet in these pages through the Gear Industry Home Page (GIHP). This electronic buyers guide for gear machine tools, tooling, accessories and services has proven to be more popular than we could have envisioned. In our first month, we had over 3,000 hits, and in our third month, we have over 4,500. By our fourth month, we topped the 7,000 mark, and we are on our way to 11,000 hits in November. As our advertisers develop their own home sites in order to offer layers of information about their companies, their products and services, we expect this activity will increase even more.

44 Two columns for the price of one... (November/December 1996)

Just back from IMTS and once again, I'm struck by the enormous vitality and strength of the manufacturing sector of the U.S. economy. It has made a phoenix-like rise from the grave dug for it by pundits in the '80s and has come back more robust and competitive than ever.

45 Efficient Methods for the Synthesis of Compound Planetary Differential Gear Trains for Multiple Speed Ratio Generation (July/August 1990)

This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.

46 Initial Design of Gears Using an Artificial Neural Net (May/June 1993)

Many CAD (Computer Aided Design) systems have been developed and implemented to produce a superior quality design and to increase the design productivity in the gear industry. In general, it is true that a major portion of design tasks can be performed by CAD systems currently available. However, they can only address the computational aspects of gear design that typically require decision-making as well. In most industrial gear design practices, the initial design is the critical task that significantly effects the final results. However, the decisions about estimating or changing gear size parameters must be made by a gear design expert.

47 Watch This Space (January/February 1996)

The Internet. Big deal. Now that you've dialed up weird, http://www.Elvis sightings and alt.naughty bits, what's online that's useful? Anything that would make your job easier, answer important questions, solve tough design problems? Information about, say, gearing? Is there anything out there in cyberspace worth the expense and hassle of going after?

48 And Other Adventures (July/August 1996)

You've been reading about it, talking about it, maybe even trying it. Gear Technology has jumped aboard it feet first and begun a voyage on the World Wide Web. Beginning with this issue, an electronic version of the magazine will be online. For those of us who still find the fax machine amazing technology, this is a great leap.

49 Engineering Questions - SME has the Answers with Knowledge Edge (August 2013)

The Society of Manufacturing Engineers (SME) has been gathering, validating and sharing manufacturing knowledge for more than 80 years. Traditionally, SME resources were purchased by individuals for their own personal use or by colleges and universities as textbooks. Recently, these same colleges and universities were looking for digital resources to provide to their instructors and students. Companies were requesting SME content digitally for their employees as well.