Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

oil analysis - Search Results

Articles About oil analysis


1 Understanding Oil Analysis: How it Can Improve Reliability of Wind Turbine Gearboxes (November/December 2013)

Historically, wind turbine gearbox failures have plagued the industry. Yet an effective oil analysis program will increase the reliability and availability of your machinery, while minimizing maintenance costs associated with oil change-outs, labor, repairs and downtime. Practical action steps are presented here to improve reliability.

2 Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage (November/December 2010)

A study was performed to evaluate fault detection effectiveness as applied to gear-tooth pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study.

3 Comparison of Test Rig and Field Measurement Results on Gearboxes for Wind Turbines (October 2011)

This article describes some of the most important tests for prototypes conducted at Winergy AG during the product development process. It will demonstrate that the measurement results on the test rig for load distribution are in accordance with the turbine measurements.

4 Application of Miner's Rule to Industrial Gear Drives (January/February 1990)

We need a method to analyze cumulative fatigue damage to specify and to design gear drives which will operate under varying load. Since load is seldom constant, most applications need this analysis.

5 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

6 Tooth Contact Shift in Loaded Spiral Bevel Gears (November/December 1992)

An analytical method is presented to predict the shifts of the contact ellipses on spiral bevel gear teeth under load. The contact ellipse shift is the motion of the point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance.

7 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

8 Tribology Aspects in Angular Transmission Systems, Part 1 (August 2010)

"General Explanations on Theoretical Bevel Gear Analysis" is part 1 of an eight-part series from Gleason's Dr. Hermann Stadtfeld.

9 KISSsoft Introduces New Features with Latest Release (September/October 2010)

Tooth contact under load is an important verification of the real contact conditions of a gear pair and an important add-on to the strength calculation according to standards such as ISO, AGMA or DIN. The contact analysis simulates the meshing of the two flanks over the complete meshing cycle and is therefore able to consider individual modifications on the flank at each meshing position.

10 Contact Analysis of Gears Using a Combined Finite Element and Surface Integral Method (July/August 1993)

The complete and accurate solution t the contact problem of three-dimensional gears has been, for the past several decades, one of the more sought after, albeit elusive goals in the engineering community. Even the arrival on the scene in the mid-seventies of finite element techniques failed to produce the solution to any but the most simple gear contact problems.

11 Generation of Helical Gears with New Surface Topology by Application of CNC Machines (January/February 1994)

Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

12 The Gear Gods Help Those That Help Themselves (January/February 2013)

"Gear Train" is a new Gear Technology section focusing on training and education in the gear industry. For the first installment, we've focused on AGMA's online and video training programs.

13 Worn Gear Contact Analysis (June/July 2013)

How does one perform a contact analysis for worn gears? Our expert responds.

14 Tooth Root Optimization of Powder Metal Gears - Reducing Stress from Bending and Transient Loads (June/July 2013)

This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.

15 Structural Analysis of Asymmetrical Teeth: Reduction of Size and Weight (September/October 1997)

The present article contains a preliminary description of studies carried out by the authors with a view toward developing asymmetrical gear teeth. Then a comparison between numerous symmetrical and asymmetrical tooth stress fields under the same modular conditions follows. This leads to the formulation of a rule for similar modules governing variations of stress fields, depending on the pressure angle of the nonactive side. Finally a procedure allowing for calculations for percentage reductions of asymmetrical tooth modules with respect to corresponding symmetrical teeth, maximum ideal stress being equal, is proposed. Then the consequent reductions in size and weight of asymmetrical teeth are assessed.

16 Structural Analysis of Teeth With Asymmetrical Profiles (July/August 1997)

This article illustrates a structural analysis of asymmetrical teeth. This study was carried out because of the impossibility of applying traditional calculations to procedures involved in the specific case. In particular, software for the automatic generation of meshes was devised because existing software does not produce results suitable for the new geometrical model required. Having carried out the structural calculations, a comparative study of the stress fields of symmetrical and asymmetrical teeth was carried out. The structural advantages of the latter type of teeth emerged.

17 Photography of Gear Failures (March/April 1994)

Photography is an essential part of gear failure analysis. It not only provides a fast, convenient way to accurately document the appearance of gear failure, but also is an effective diagnostic tool because the magnification obtained through photographic enlargement and slide projection often discloses evidence that may have been missed if the gears were not photographed.

18 Meshing of a Spiral Bevel Gear Set With 3-D Finite Element Analysis (March/April 1997)

Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gear set through mesh. With the advent of user-specific programming linked to 3-D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gear set it placed in mesh, user subroutines attached to the FE code easily roll it through mesh. The method is described in detail. Preliminary result for a gear set segment showing the progression of the contact line load is given as the gears roll through mesh.

19 The Anatomy of a Micropitting-Induced Tooth Fracture Failure (June 2010)

Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause much perturbation in the overall operation of a gear system, the ultimate consequences of a micropitting failure can, and frequently are, much more catastrophic.

20 Analyzing Gear Tooth Stress as a Function of Tooth Contact Pattern Shape and Position (January/February 1985)

The development of a new gear strength computer program based upon the finite element method, provides a better way to calculate stresses in bevel and hypoid gear teeth. The program incorporates tooth surface geometry and axle deflection data to establish a direct relationship between fillet bending stress, subsurface shear stress, and applied gear torque. Using existing software links to other gear analysis programs allows the gear engineer to evaluate the strength performance of existing and new gear designs as a function of tooth contact pattern shape, position and axle deflection characteristics. This approach provides a better understanding of how gears react under load to subtle changes in the appearance of the no load tooth contact pattern.

21 Vacuum Oil Quenching (November/December 2011)

The October 2011 issue of Gear Technology featured the article “Low-Distortion Heat Treatment of Transmission Components,” which covered the combination of low-pressure carburizing and high pressure gas quenching in an automotive environment. Here, heat treating expert Dan Herring explains why oil quenching is an appropriate choice for many applications.

22 New Energy - Same Challenges (January/February 2012)

Uncertainty casts a shadow over future business opportunities for manufacturers serving the new energy markets.

23 Scoring Load Capacity of Gears Lubricated with EP-Oils (October/November 1984)

The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.

24 Environmentally Friendly Cutting Fluids (March/April 2005)

Environmentally friendly cutting fluids aren't just good for the environment. They can also be good for performance.

25 Design of Oil-Lubricated Machine Components for Life and Reliability (November/December 2007)

This article summarizes the use of laboratory fatigue data for bearings and gears coupled with probabilistic life prediction and EHD theories to predict the life and reliability of a commercial turboprop gearbox.

26 Service Behavior of PVD-Coated Gearing Lubricated with Biodegradable Synthetic Ester Oils (January/February 2004)

The following article is concerned with the analysis of the wear-reducing effect of PVD-coatings in gearings. Standardized test methods are used, which under near-real conditions enable statements to be made about the different forms of damage and wear (micropitting, macropitting, scuffing).

27 Big Gears - High Standards, High Profits (January/February 2009)

Natural resources—minerals, coal, oil, agricultural products, etc.—are the blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.

28 Cutting Low-Pich-Angle Bevel Gears; Worm Gears & The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

29 Ten Myths About Gear Lubrication (May/June 1995)

Myth No. 1: Oil Is Oil. Using the wrong oil is a common cause of gear failure. Gears require lubricants blended specifically for the application. For example, slow-speed spur gears, high-speed helical gears, hypoid gears and worm gears all require different lubricants. Application parameters, such as operating speeds, transmitted loads, temperature extremes and contamination risks, must be considered when choosing an oil. Using the right oil can improve efficiency and extend gear life.

30 Purchasing Gear Lubricants - Be Careful When Playing the Numbers Game (October 2013)

When it comes to purchasing gear lubricants, many people on both the sales and purchasing side decide to play the numbers game. The person with the most numbers, or the biggest numbers, or the lowest numbers, must have the best product - right? Wrong; gear oil selection is not a game, and numbers alone cannot determine the right product for an application.

31 The Effect of Flexible Components on the Durability, Whine, Rattle and Efficiency of an Automotive Transaxle Geartrain System (November/December 2009)

Gear engineers have long recognized the importance of considering system factors when analyzing a single pair of gears in mesh. These factors include important considerations such as load sharing in multi-mesh geartrains and bearing clearances, in addition to the effects of flexible components such as housings, gear blanks, shafts and carriers for planetary geartrains. However, in recent years, transmission systems have become increasingly complex—with higher numbers of gears and components—while the quality requirements and expectations in terms of durability, gear whine, rattle and efficiency have increased accordingly.

32 My Gear Is Bigger than Your Gear (March/April 2013)

Industry battles it out for World's Largest Gear title.

33 Gear Wear Caused By Contaminated Oils (September/October 1996)

The diagnosis and prevention of gear tooth and bearing wear requires the discovery and understanding of the particular mechanism of wear, which in turn indicates the best method of prevention. Because a gearbox is a tribologically dependent mechanism, some understanding of gear and bearing tribology is essential for this process. Tribology is the general term for the study and practice of lubrication, friction and wear. If tribology is neglected or considered insignificant, poor reliability and short life will result.

34 Gear Oil Classification and Selection (May/June 1995)

Today gear drive operations have several options when selecting the proper lubricant for their gearboxes. As in the past, the primary lubricant used for gearbox lubrication is mineral oil. But with the advances in technology, synthetic hydrocarbons (PAOs) and polyglycols show very specific advantages in certain applications. With gear drives becoming more and more precise, it is now also to the benefit of the gear operator to verify that he or she has the proper additive package and viscosity in the lubricant selected. Fig. 1 shoes that a gear oil is a combination of a base oil and specific additives. The base oils can be either mineral oil, a synthetic or even in some cases a combination of the two.

35 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

36 The Effect of Start-Up Load Conditions on Gearbox Performance and Life Failure Analysis, With Supporting Case Study (June 2009)

If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions, and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.