Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

open gear drives - Search Results

Articles About open gear drives

1 Alternative Lubrication Methods for Large Open Gear Drives (September/October 1996)

The type of lubricant and the method of applying it to the tooth flanks of large open gears is very important from the point of view of lubrication technology and maintenance. When selecting the type of lubricant and the application method, it is important to check whether it is possible to feed the required lubricant quantity to the load-carrying tooth flanks, This is necessary to avoid deficient lubrication, damage to the gear and operational malfunctions. It is important to determine the type of lubricant, which may be fluid or grease-like. The consistency of the lubricant will have a direct impact on the ability of the lubrication system to feed adequately the lubricant to the gear. The interactions between the common types of lubricant and the lubrication application methods for open gear drives are shown in Fig. 1.

2 Eddy Current Examination of Gear Systems (May/June 1997)

Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.

3 How Bearing Design Improves Gearbox Performance (September 2012)

Gearbox performance, reliability, total cost of ownership (energy cost), overall impact on the environment, and anticipation of additional future regulations are top-of-mind issues in the industry. Optimization of the bearing set can significantly improve gearbox performance.

4 Worm Gears - Ask the Expert (October 2013)

How does one determine the center of a worm and a worm wheel? Also, what are the differences between the common worm tooth forms?

5 Minimal Tooth Number of Flexspline in Harmonic Gear Drive with External Wave Generator (October 2013)

Wave generators are located inside of flexsplines in most harmonic gear drive devices. Because the teeth on the wheel rim of the flexspline are distributed radially, there is a bigger stress concentration on the tooth root of the flexspline meshing with a circular spline, where a fatigue fracture is more likely to occur under the alternating force exerted by the wave generator. The authors' solution to this problem is to place the wave generator outside of the flexspline, which is a scheme named harmonic gear drive (HGD) with external wave generator (EWG).

6 Gear Ratio Epicyclic Drives Analysis (June 2014)

It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.

7 Designing Reliability Into Industrial Gear Drives (September/October 1998)

The primary objective in designing reliable gear drives is to avoid failure. Avoiding failure is just as important for the manufacturer and designer as it is for the end user. Many aspects should be considered in order to maximize the potential reliability and performance of installed gearing.

8 Developing a Total Productive Maintenance System (May/June 1995)

There's a reason they call it catastrophic gear failure: For example, if the line goes down at a large aluminum rolling mill because a gear set goes bad, the cost can run up to a whopping $200,000 a week. Even in smaller operations, the numbers alone (not to mention all the other problems) can be a plant manager's worst nightmare.

9 Standards Development: Enclosed Drives (March/April 2011)

Chairman Todd Praneis of Cotta Transmission describes the activities of AGMA's Enclosed Drives technical committee.

10 Application of Miner's Rule to Industrial Gear Drives (January/February 1990)

We need a method to analyze cumulative fatigue damage to specify and to design gear drives which will operate under varying load. Since load is seldom constant, most applications need this analysis.

11 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

12 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

13 Full-Load Testing of Large Gearboxes Using Closed-Loop Power Circulation (September/October 1991)

This method of testing large gearboxes or, indeed, any power transmission element, had numerous advantages and offers the possibility of large savings in time, energy, and plant, if the overall situation is conducive to its use. This usually requires that several such units need to be tested, and that they can be conveniently connected to each to each other in such a way as to form a closed-loop drive train. No power sink is required, and the drive input system has only to make up power losses. The level of circulating power is controlled by the torque, which is applied statically during rotation, and the drive speed. Principles, advantage, and limitations are described, together with recent experiences in the only known large-scale usage of this technique in Australia.