parallel axis - Search Results

Articles About parallel axis

Articles are sorted by RELEVANCE. Sort by Date.

1 Gear Grinding Techniques Parallel Axes Gears (March/April 1985)

The fundamental purpose of gear grinding is to consistently and economically produce "hard" or "soft" gear tooth elements within the accuracy required by the gear functions. These gear elements include tooth profile, tooth spacing, lead or parallelism, axial profile, pitch line runout, surface finish, root fillet profile, and other gear geometry which contribute to the performance of a gear train.

2 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

3 Profile Shift in External Parallel Axis Cylindrical Involute Gears (November/December 2001)

Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.

4 Parallel Axis Gear Grinding: Theory & Application (November/December 2000)

The goal of gear drive design is to transit power and motion with constant angular velocity. Current trends in gear drive design require greater load carrying capacity and increased service life in smaller, quieter, more efficient gearboxes. Generally, these goals are met by specifying more accurate gears. This, combined with the availability of user-friendly CNC gear grinding equipment, has increased the use of ground gears.

5 Compter-Aided Spur Gear Tooth Design: An Application-Driven Approach (November/December 1989)

This article discusses an application driven approach to the computer-aided sizing of spur gear teeth. The methodology is bases on the index of tooth loading and environment of application of the gear. It employs handbook knowledge and empirical information to facilitate the design process for a novice. Results show that the approach is in agreement with the textbook data. However, this technique requires less expert knowledge to arrive at the conclusion. The methodology has been successfully implemented as a gear tooth sizing module of a parallel axis gear drive expert system.

6 Base Pitch Tables (September/October 1992)

There is one dimension common to both members of a pair of properly mating spur gears - the base pitch (BP). This base pitch is equal to the circular pitch of the gear on the base circle (see Fig. 1). For a helical gear, the base pitch can be described in either the transverse or normal plane, and is called the transverse base pitch (TBP) or normal base pitch (NBP), respectively. For parallel axis helical gears, both the TBP and NBP must be the same on both mating gears. For skew axis helical gears, only the NBP must be common.

7 Optimal Flank Forms for Large Bevel Gears (November/December 2016)

At first sight the appearance of 5-axis milling for bevel gears opens new possibilities in flank form design. Since in comparison to existing machining methods applying cutter heads no kinematic restrictions exist for 5-axis milling technology, any flank form can be machined. Nevertheless the basic requirements for bevel gears did not change. Specifications and functional requirements like load carrying capacity and running behavior are still increasing demands for design and manufacturing. This paper describes the demands for gear design and gives an overview about different design principles in the context of the surrounding periphery of the gear set.

8 All-For-One, One-For-All (May 2016)

The “less is more” mantra is certainly a rallying cry in manufacturing. Technologies like multiaxis machining, 3D printing and automation are enabling companies to be more efficient, cost-conscious and flexible on the shop floor.

9 Best Tooling for Hard Milling a Gear Tooth on 5-Axis Machining Center (January/February 2017)

What is the best tooling to use when hard milling a gear tooth on a 5-axis machining center? And what makes it the best? We have just bought a DMG Mori mono-block and are not getting the finishes at the cycle times we require.

10 Performance of Gears Manufactured by 5-Axis Milling (March/April 2017)

Free form milling of gears becomes more and more important as a flexible machining process for gears. Reasons for that are high degrees of freedom as the usage of universal tool geometry and machine tools is possible. This allows flexible machining of various gear types and sizes with one manufacturing system. This paper deals with manufacturing, quality and performance of gears made by free form milling. The focus is set on specific process properties of the parts. The potential of free form milling is investigated in cutting tests of a common standard gear. The component properties are analyzed and flank load-carrying capacity of the gears is derived by running trials on back-to-back test benches. Hereby the characteristics of gears made by free form milling and capability in comparison with conventionally manufactured gears will be shown.

11 An Approach to Pairing Bevel Gears from Conventional Cutting Machine with Gears Produced on 5-Axis Milling Machine (June 2015)

Developed here is a new method to automatically find the optimal topological modification from the predetermined measurement grid points for bevel gears. Employing this method enables the duplication of any flank form of a bevel gear given by the measurement points and the creation of a 3-D model for CAM machining in a very short time. This method not only allows the user to model existing flank forms into 3-D models, but also can be applied for various other purposes, such as compensating for hardening distortions and manufacturing deviations which are very important issues but not yet solved in the practical milling process.

12 5-Axis Gear Manufacturing Gets Practical (March/April 2017)

Exciting new machine, cutting tool and software technologies are compelling many manufacturers to take a fresh look at producing their larger gears on machining centers. They're faster than ever, more flexible, easy to operate, highly affordable - and for any type of gear.

13 Message Received (March/April 2017)

Big Data Expands Process Capabilities for Multi-Axis Machining.

14 A Practical Approach for Modeling a Bevel Gear (March/April 2015)

The geometry of the bevel gear is quite complicated to describe mathematically, and much of the overall surface topology of the tooth flank is dependent on the machine settings and cutting method employed. AGMA 929-A06 — Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius — lays out a practical approach for predicting the approximate top-land thicknesses at certain points of interest — regardless of the exact machine settings that will generate the tooth form. The points of interest that AGMA 929-A06 address consist of toe, mean, heel, and point of involute lengthwise curvature. The following method expands upon the concepts described in AGMA 929-A06 to allow the user to calculate not only the top-land thickness, but the more general case as well, i.e. — normal tooth thickness anywhere along the face and profile of the bevel gear tooth. This method does not rely on any additional machine settings; only basic geometry of the cutter, blank, and teeth are required to calculate fairly accurate tooth thicknesses. The tooth thicknesses are then transformed into a point cloud describing both the convex and concave flanks in a global, Cartesian coordinate system. These points can be utilized in any modern computer-aided design software package to assist in the generation of a 3D solid model; all pertinent tooth macrogeometry can be closely simulated using this technique. A case study will be presented evaluating the accuracy of the point cloud data compared to a physical part.

15 Calculating Face Load Distribution Factor (March/April 2015)

How should we consider random helix angle errors fHβ and housing machining errors when calculating KHβ? What is a reasonable approach?

16 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

17 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

18 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

19 Gear Milling on Non-Gear Dedicated Machinery (July 2009)

Imagine the flexibility of having one machine capable of milling, turning, tapping and gear cutting with deburring included for hard and soft material. No, you’re not in gear fantasy land. The technology to manufacture gears on non gear-dedicated, mult-axis machines has existed for a few years in Europe, but has not yet ventured into mainstream manufacturing. Deckel Maho Pfronten, a member of the Gildemeister Group, took the sales plunge this year, making the technology available on most of its 2009 machines.

20 Product News (June 2009)

The complete product news section from the June 2009 issue of Gear Technology.

21 Gears for Nonparallel Shafts (September/October 1986)

Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.

22 Multifunctional Advancements (January/February 2012)

The latest in big gear machining with DMG/Mori Seiki.

23 Manufacturing Method of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System Using Multi-Axis Control and Multi-Tasking Machine Tool (August 2011)

In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.

24 The Merits of Multifunctional Machining (January/February 2011)

Higher productivity, faster setup times and single unattended operations are just a few of the capabilities gear manufacturers seek in the multifunctional machine tool market.

25 Producing Large-Sized, Skew Bevel Gear Pinion Using Multi-Axis Control and Multi-Tasking Machine Tool (March/April 2013)

This paper proposes a method for the manufacture of a replacement pinion for an existing, large-sized skew bevel gear using multi-axis control and multitasking machine tool.

News Items About parallel axis

1 Norton’s New Gear Grinding Wheels Increase Life of Parallel Axis Spur Gears (April 11, 2006)
The new BRGg VPHS high speed grinding wheels from Saint Gobain are designed to reduce cycle times by increasing metal removal rates. The ... Read News