Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

parallel shaft transmissions - Search Results

Articles About parallel shaft transmissions


Articles are sorted by RELEVANCE. Sort by Date.

1 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

2 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

3 Optimism in Wind Abounds (January/February 2009)

Big gears and wind turbines go together like bees and honey, peas and carrots, bread and butter and—well, you get the idea. Wind isn’t just big right now, it’s huge. The wind industry means tremendous things for the energy dependent world we live in and especially big things for gear manufacturers and other beleaguered American industries.

4 Grinding Gears for Racing Transmissions (September/October 2009)

When you push 850 horsepower and 9,000 rpm through a racing transmission, you better hope it stands up. Transmission cases and gears strewn all over the racetrack do nothing to enhance your standing, nor that of your transmission supplier.

5 New Transmissions Drive Automotive Gear Industry (July/August 2006)

News from the major automakers and transmission suppliers.

6 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

7 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.

8 How to Minimize Power Losses in Transmissions, Axles and Steering Systems (September 2012)

By increasing the number of gears and the transmission-ratio spread, the engine will run with better fuel efficiency and without loss of driving dynamics. Transmission efficiency itself can be improved by: using fuelefficient transmission oil; optimizing the lubrication systems and pumps; improving shifting strategies and optimizing gearings; and optimizing bearings and seals/gaskets.

9 Wind Turbine Market Leads Hansen Transmissions to India (June 2007)

When Belgium-based Hansen Transmissions was under the ownership of Invensys plc in the late 1990s, the parent company was dropping not-so-subtle hints that the industrial gearbox manufacturer was not part of its long-term plans. Yet Hansen’s CEO Ivan Brems never dreamed that, less than a decade later, he would be working for an Indian company.

10 Trends in Automobile Transmissions (July/August 2006)

With all the work in transmission development these days, the demand for automobile transmission gears should remain strong for several years, but suppliers will have to be as flexible as possible to keep up with the changes.

11 Multi-Metal Composite Gear-Shaft Technology (January/February 1995)

A research program, conducted in conjunction with a U.S. Army contract, has resulted in the development of manufacturing technology to produce a multi-metal composite gear/shaft representing a substantial weight savings compared to a solid steel component. Inertia welding is used to join a steel outer ring to a light-weight titanium alloy web and/or shaft through the use of a suitable interlayer material such as aluminum.

12 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

13 Gear Grinding Techniques Parallel Axes Gears (March/April 1985)

The fundamental purpose of gear grinding is to consistently and economically produce "hard" or "soft" gear tooth elements within the accuracy required by the gear functions. These gear elements include tooth profile, tooth spacing, lead or parallelism, axial profile, pitch line runout, surface finish, root fillet profile, and other gear geometry which contribute to the performance of a gear train.

14 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

15 Optimal Choice of the Shaft Angle for Involute Gear Hobbing (November/December 2007)

With reference to the machining of an involute spur or helical gear by the hobbing process, this paper suggests a new criterion for selecting the position of the hob axis relative to the gear axis.

16 Camshaft Gears (November/December 1992)

One of our readers in England has asked for our help in locating published technical data and information on the design, manufacture, and inspection of camshaft gears. Although millions of these gears have been made and are in constant use, we are not aware of any formal material having been published. We would be pleased to hear from anyone who had knowledge of such information.

17 Longitudinal Load Distribution Factor for Straddle- and Overhang-Mounted Spur Gears (July/August 1987)

A pair of spur gears generally has an effective lead error which is caused, not only by manufacturing and assembling errors, but also by the deformations of shafts, bearings and housings due to the transmitted load. The longitudinal load distribution on a contact line of the teeth of the gears is not uniform because of the effective lead error.

18 Optimization of a Process Chain for Gear Shaft Manufacturing (March/April 2013)

The research presented here is part of an ongoing (six years to date) project of the Cluster of Excellence (CoE). CoE is a faculty-wide group of researchers from RWTH Aachen University in Aachen (North Rhine-Westphalia). This presentation is a result of the group’s examination of "integrative production technology for high-wage countries," in which a shaft for a dual-clutch gearbox is developed.