pitting fatigue - Search Results

Articles About pitting fatigue


Articles are sorted by RELEVANCE. Sort by Date.

1 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

2 Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage (November/December 2010)

A study was performed to evaluate fault detection effectiveness as applied to gear-tooth pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study.

3 Predicted Effect of Dynamic Load on Pitting Fatigue Life for Low-Contact-Ratio Spur Gears (March/April 1989)

How dynamic load affects the pitting fatigue life of external spur gears was predicted by using NASA computer program TELSGE. TELSGE was modified to include an improved gear tooth stiffness model, a stiffness-dynamic load iteration scheme and a pitting-fatigue-life prediction analysis for a gear mesh. The analysis used the NASA gear life model developed by Coy, methods of probability and statistics and gear tooth dynamic loads to predict life. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact.

4 Bending Fatigue, Impact and Pitting Resistance of Ausform-Finished PM Gears (June 2010)

The powder metal (P/M) process is making inroads in automotive transmission applications due to substantially lower costs of P/M-steel components for high-volume production, as compared to wrought or forged steel parts. Although P/M gears are increasingly used in powered hand tools, gear pumps and as accessory components in automotive transmissions, P/M-steel gears are currently in limited use in vehicle transmission applications. The primary objective of this project was to develop high-strength P/M-steel gears with bending fatigue, impact resistance and pitting fatigue performance equivalent to current wrought steel gears.

5 Improved Gear Life Through Controlled Shot Peening (September/October 1986)

The search for greater gear life involves improvement in cost, weight and increased power output. There are many events that affect gear life, and this paper addresses those relating to fatigue, gear tooth pitting, fatigue strength losses due to the heat treating processes and shot peening technique. The capability of shot peening to increase fatigue strength and surface fatigue life eliminate machine marks which cause stress risers, and to aid in lubrication when properly controlled, suggests increased use and acceptance of the process.

6 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

7 Characterizaton of Retained Austenite in Case Carburized Gears and Its Influence on Fatigue Performance (May/June 2003)

Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.

8 Influence of Lubrication on Pitting and Micropitting Resistance of Gears (March/April 1990)

Pitting and micropitting resistance of case-carburized gears depends on lubricants and lubrication conditions. Pitting is a form of fatigue damage. On this account a short time test was developed. The test procedure is described. The "pitting test" was developed as a short time test to examine the influence of lubricants on micropitting. Test results showing the influence of case-carburized gears on pitting and micropitting are presented.

9 Effects on Rolling Contact Fatigue Performance--Part II (March/April 2007)

This is part II of a two-part paper that presents the results of extensive test programs on the RCF strength of PM steels.

10 Effects on Rolling Contact Fatigue Performance (January/February 2007)

This article summarizes results of research programs on RCF strength of wrought steels and PM steels.

11 Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence on Material, Design and Manufacturing Parameters (November/December 2009)

A single tooth bending (STB) test procedure has been developed to optimally map gear design parameters. Also, a test program on case-carburized, aerospace standard gears has been conceived and performed in order to appreciate the influence of various technological parameters on fatigue resistance and to draw the curve shape up to the gigacycle region.

12 Evaluation of Bending Strength of Carburized Gears (May/June 2004)

The aim of our research is to clearly show the influence of defects on the bending fatigue strength of gear teeth. Carburized gears have many types of defects, such as non-martensitic layers, inclusions, tool marks, etc. It is well known that high strength gear teeth break from defects in their materials, so it’s important to know which defect limits the strength of a gear.

13 Increased Tooth Bending Strength and Pitting Load Capacity of Fine-Module Gears (September/October 2016)

The common calculation methods according to DIN 3990 and ISO 6336 are based on a comparison of occurring stress and allowable stress. The influence of gear size on the load-carrying capacity is considered with the size factors YX (tooth root bending) and ZX (pitting), but there are further influences, which should be considered. In the following, major influences of gear size on the load factors as well as on the permissible tooth root bending and contact stress will be discussed.

14 Micropitting of Large Gearboxes: Influence of Geometry and Operating Conditions (September/October 2014)

The focus of the following presentation is two-fold: 1) on tests of new geometric variants; and 2) on to-date, non-investigated operating (environmental) conditions. By variation of non-investigated eometric parameters and operation conditions the understanding of micropitting formation is improved. Thereby it is essential to ensure existent calculation methods and match them to results of the comparison between large gearbox tests and standard gearbox test runs to allow a safe forecast of wear due to micropitting in the future.

15 On the Correlation of Specific Film Thickness and Gear Pitting Life (January/February 2015)

The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive data set. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures.

16 Optimal Modifications on Helical Gears for Good Load Distribution and Minimal Wear (June 2015)

Helical gear teeth are affected by cratering wear — particularly in the regions of low oil film thicknesses, high flank pressures and high sliding speeds. The greatest wear occurs on the pinion — in the area of negative specific sliding. Here the tooth tip radius of the driven gear makes contact with the flank of the driving gear with maximum sliding speed and pressure.

17 Critique of the ISO 15144-1 Method to Predict the Risk of Micropitting (March/April 2016)

There exists an ongoing, urgent need for a rating method to assess micropitting risk, as AGMA considers it a “a very significant failure mode for rolling element bearings and gear teeth — especially in gearbox applications such as wind turbines.”

18 Effects of Axle Deflection and Tooth Flank Modification on Hypoid Gear Stress Distribution and Contact Fatigue Life (August 2009)

As is well known in involute gearing, “perfect” involute gears never work perfectly in the real world. Flank modifications are often made to overcome the influences of errors coming from manufacturing and assembly processes as well as deflections of the system. The same discipline applies to hypoid gears.

19 Methodology for Translating Single-Tooth Bending Fatigue Data to be Comparable to Running Gear Data (March/April 2008)

A method to extrapolate running gear bending strength data from STF results for comparing bending performance of different materials and processes.

20 Austempered Gears and Shafts: Tough Solutions (March/April 2001)

Austempered irons and steels offer the design engineer alternatives to conventional material/process combinations. Depending on the material and the application, austempering may provide the producers of gear and shafts with the following benefits: ease of manufacturing, increased bending and/or contact fatigue strength, better wear resistance or enhanced dampening characteristics resulting in lower noise. Austempered materials have been used to improve the performance of gears and shafts in many applications in a wide range of industries.

21 Design Against Tooth Interior Fatigue Fracture (November/December 2000)

In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.

22 Design Formulas for Evaluating Contact Stress in Generalized Gear Pairs (May/June 2001)

A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).

23 Consideration of Moving Tooth Load in Gear Crack Propagation Predictions (January/February 2002)

Effective gear designs balance strength, durability, reliability, size, weight, and cost. Even effective designs, however, can have the possibility of gear cracks due to fatigue. In addition, truly robust designs consider not only crack initiation, but also crack propagation trajectories. As an example, crack trajectories that propagate through the gear tooth are the preferred mode of failure compared to propagation through the gear rim. Rim failure will lead to catastrophic events and should be avoided. Analysis tools that predict crack propagation paths can be a valuable aid to the designer to prevent such catastrophic failures.

24 Knowing When Enough Is Enough (November/December 2015)

Detection of impending gear tooth failure is of interest to every entity that utilizes geared transmissions. However, it is of particular significance at the Gear Research Institute (GRI), where sponsored efforts are conducted to establish gear material endurance limits, utilizing gear fatigue tests. Consequently, knowing when a gear is about to fail in each and every test, in a consistent manner, is essential for producing reliable and useful data for the gear industry.

25 Setting Load Parameters for Viable Fatigue Testing of Gears in Powertrain Axles Part I: Single-Reduction Axles (August 2014)

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

26 Gear Crack Propagation Investigations (November/December 1997)

A common design goal for gears in helicopter or turboprop power transmission is reduced weight. To help meet this goal, some gear designs use thin rims. Rims that are too thin, however, may lead to bending fatigue problems and cracks. The most common methods of gear design and analysis are based on standards published by the American Gear Manufacturers Association. Included in the standards are rating formulas for gear tooth bending to prevent crack initiation (Ref. 1). These standards can include the effect of rim thickness on tooth bending fatigue (Ref 2.). The standards, however, do not indicate the crack propagation path or the remaining life once a crack has started. Fracture mechanics has developed into a useful discipline for predicting strength and life of cracked structures.

27 Comparison of Surface Durability & Dynamic Performance of Powder Metal & Steel Gears (September/October 1995)

Surface-hardened, sintered powder metal gears are increasingly used in power transmissions to reduce the cost of gear production. One important problem is how to design with surface durability, given the porous nature of sintered gears. Many articles have been written about mechanical characteristics, such as tensile and bending strength, of sintered materials, and it is well-known that the pores existing on and below their surfaces affect their characteristics (Refs. 1-3). Power transmission gears are frequently employed under conditions of high speed and high load, and tooth surfaces are in contact with each other under a sliding-rolling contact condition. Therefore it is necessary to consider not only their mechanical, but also their tribological characteristics when designing sintered gears for surface durability.

28 Study of the Correlation Between Theoretical and Actual Gear Fatigue Test Data on a Polyamide (June 2008)

In the past two years DSM has been conducting fatigue tests on actual molded gears in order to provide design data.

29 New Methods for the Calculation of the Load Capacity of Bevel and Hypoid Gears (June/July 2013)

Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting risk. Verification of this new method through testing is demonstrably shown.

30 Maximum Surface Temperature of the Thermoplastic Gear in a Non-Lubricated Plastic-Steel Gear Pair (August/September 1984)

One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation. Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.

31 Effect of Shot Peening on Surface Fatigue Life of Carburized and Hardened AISI 1910 Spur Gears (January/February 1986)

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

32 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

33 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

34 The Fatigue Endurance Limit: A Myth (November/December 2005)

Review of "Gigacycle Fatigue in Mechanical Practice," by Claude Bathias and Paul C. Paris

35 Gear Surface Durability Development to Enhance Transmission Power Density (July/August 2002)

Gear pitting is one of the primary failure modes of automotive transmission gear sets. Over the past years, many alternatives have been intended to improve their gear surface durability. However, due to the nature of new process development, it takes a length of time and joint efforts between the development team and suppliers to investigate and verify each new approach.

36 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

37 Pitting Load Capacity of Helical Gears (May 2008)

Influences of Load Distribution and Tooth Flank Modifications as Considered in a New, DIN/ISO-Compatible Calculation Method

38 Innovative Analysis and Documentation of Gear Test Results (September/October 2008)

In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate, cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.

39 The Anatomy of a Micropitting-Induced Tooth Fracture Failure (June 2010)

Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause much perturbation in the overall operation of a gear system, the ultimate consequences of a micropitting failure can, and frequently are, much more catastrophic.

40 Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration (January/February 2011)

Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more severe near the start-of-active-profile (SAP) of the driving gear.

41 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.

42 The Influence of Additive Chemistry on Micropitting (May/June 2005)

This article discusses the potential effects observed for different antiwear and EP chemistry on the micropitting of cylindrical gears.

43 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

44 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

45 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

46 Gear Corrosion During the Manufacturing Process (September/October 2009)

No matter how well gears are designed and manufactured, gear corrosion can occur that may easily result in catastrophic failure. Since corrosion is a sporadic and rare event and often difficult to observe in the root fillet region or in finely pitched gears with normal visual inspection, it may easily go undetected. This paper presents the results of an incident that occurred in a gear manufacturing facility several years ago that resulted in pitting corrosion and intergranular attack (IGA).

47 Influence of Surface Roughness on Gear Pitting Behavior (May/June 2006)

In earlier studies, surface roughness has been shown to have a significant influence on gear pitting life. This paper discusses how high surface roughness introduces a wear mechanism that delays the formation of pits. Accompanied by a full-page technical review.

48 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

49 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

50 Calculating Spur and Helical Gear Capacity with ISO 6336 (November/December 1998)

This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.

51 Relationship Between Wear and Pitting Phenomena in Worm Gears (May/June 1998)

Worm gears display unique behavior of surfaces because of the presence of wear phenomena in addition to contact pressure phenomena.

52 Gear Oil Micropitting Evaluation (September/October 2000)

During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.

53 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

54 Pitting Resistance of Worm Gears: Advanced Model for Contact Pattern of Any Size, Position, Flank Type (October 2012)

An experimental and theoretical analysis of worm gear sets with contact patterns of differing sizes, position and flank type for new approaches to calculation of pitting resistance.

55 Gear Material Quality: How To Judge It...Pitting: How To Prevent It (March/April 1993)

How do we know when the gear material we buy is metallurgically correct? How can we judge material quality when all gear material looks alike?

56 A Rational Procedure for Designing Minimum-Weight Gears (November/December 1991)

A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.

57 Lubricant Jet Flow Phenomena in Spur and Helical Gears (January/February 1987)

In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.

58 A Proposed Life Calculation for Micropitting (November/December 2011)

If you make hardened gears and have not seen any micropitting, then you haven’t looked closely enough. Micropitting is one of the modes of failure that has more recently become of concern to gear designers and manufacturers. Micropitting in itself is not necessarily a problem, but it can lead to noise and sometimes other more serious forms of failure. Predicting when this will occur is the challenge facing designers.

59 AGMA, ISO, and BS Gear Standards Part I - Pitting Resistance Ratings (November/December 1990)

A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formula and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.

60 AGMA Responds to Gear Standards Article (January/February 1991)

The authors of last issue's article comparing AGMA, ISO and BS methods for Pitting Resistance Ratings are commended. Trying to compare various methods of rating gears is like hitting a moving target in a thick forest. The use of different symbols, presentations, terminology, and definitions in these standards makes it very difficult. But the greatest problem lies with the authors' use of older versions of these documents. ISO drafts and AGMA standards have evolved at the same time their work was accomplished and edited.

61 AGMA, ISO, and BS Gear Standards Part II - Pitting Resistance Ratings (January/February 1991)

In Part I differences in pitting ratings between AGMA 218, the draft ISO standard 6336, and BS 436:1986 were examined. In this part bending strength ratings are compared. All the standards base the bending strength on the Lewis equation; the ratings differ in the use and number of modification factors. A comprehensive design survey is carried out to examine practical differences between the rating methods presented in the standards, and the results are shown in graphical form.

62 Morphology of Micropitting (November/December 2012)

Understanding the morphology of micropitting is critical in determining the root cause of failure. Examples of micropitting in gears and rolling-element bearings are presented to illustrate morphological variations that can occur in practice.