Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

planetary gears - Search Results

Related Power Transmission Categories

Planetary Gears

Related Power Transmission Companies

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels.

Articles About planetary gears


1 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

2 Effects of Planetary Gear Ratio on Mean Service Life (July/August 1998)

Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.

3 Stress of Planet Gears with Thin Rims (March/April 1994)

This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.

4 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

5 Industry Forum (November/December 1985)

One of the current research activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.

6 Planet Carrier Design (January/February 2014)

With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?

7 Efficient Methods for the Synthesis of Compound Planetary Differential Gear Trains for Multiple Speed Ratio Generation (July/August 1990)

This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.

8 The Elementary Theory for the Synthesis of Constant Direction Pointing Chariots (or Rotation Neutralizers) (November/December 1988)

The south-pointing chariot exhibited at the Smithsonian Institution, Washington, D.C., (circa 2600 BC)is shown in Fig. 1. Although the mechanism is ancient, it is by no means either primitive or simplistic. The pin-tooth gears drive a complex system, wherein the monk on the top of the chariot continues to point in a preset direction, no matter what direction the vehicle in moved, without a slip of the wheels.(1)

9 A Planetary System that Increases Power Density (January/February 2005)

Turnkey Design Services is manufacturing a planetary gear system to increase power density.

10 A Logical Procedure To Determine Initial Gear Size (November/December 1986)

When a gear set is to be designed for a new application, the minimum size gears with the required capacity are desired. These gears must be capable of meeting the power, speed, ratio, life, and reliability requirements.

11 Analysis of Load Distribution in Planet Gear Bearings (September 2011)

In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring canít be considered rigid.

12 KHV Planetary Gearing (November/December 1987)

Traditionally, a worm or a multi-stage gear box has been used when a large speed ratio is required. However, such boxes will become obsolete as size and efficiency become increasingly important considerations for a modern transmission. The single-enveloped worm gear has a maximum speed ratio of only 40 to 60. Its efficiency is only 30 to 60 per cent. The necessity of using bronze for the worm gear and grinding nitoalloy steel for the worm drives up material and manufacturing costs.

13 KHV Planetary Gearing - Part II (January/February 1988)

Consisting of only a ring gear b meshing with one or two planets a, a carrier H and an equal velocity mechanism V, a KHV gearing(Fig. 1) is compact in structure, small in size and capable of providing a large speed ratio. For a single stage, its speed ratio can reach up to 200, and its size is approximately 1/4 that of a conventional multi-stage gear box.

14 Load Distribution in Planetary Gears (May/June 2001)

Two-shaft planetary gear drives are power-branching transmissions, which lead the power from input to output shaft on several parallel ways. A part of the power is transferred loss-free as clutch power. That results in high efficiency and high power density. Those advantages can be used optimally only if an even distribution of load on the individual branches of power is ensured. Static over-constraint, manufacturing deviations and the internal dynamics of those transmission gears obstruct the load balance. With the help of complex simulation programs, it is possible today to predict the dynamic behavior of such gears. The results of those investigations consolidate the approximation equations for the calculation of the load factors...

15 On The Interference of Internal Gearing (July/August 1989)

Since size and efficiency are increasingly important considerations in modern machinery, the trend is gear design is to use planetary gearing instead of worm gearing and multi-stage gear boxes. Internal gearing is an important part of most of planetary gear assemblies. In external gearing, if the gears are standard (of no-modified addenda), interference rarely happens. But in an internal gearing, especially in some new types of planetary gears, such as the KHV planetary, the Y planetary, etc., (1) various types of interference may occur. Therefore, avoiding interference is of significance for the design of internal gearing.

16 Investigation of the Noise and Vibration of Planetary Gear Drives (January/February 2006)

With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.