Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

plastic - Search Results

Related Buyers Guide Categories

Plastic Gear Lubricants
Plastic Resins
Plastic Stock Forms

Related Companies

Celanese
Supplier of polymers suitable for gearing to the injection molding industry.

Gleason Corporation
Gleason Corporation’s mission is to be The Total Gear Solutions Provider™ to its global customer base. Gleason is a world leader in the development, manufacture and sale of gear production machinery and related equipment. The Company’s products are used by customers in automotive, truck, aircraft, agriculture, mining, windpower, construction, power tool and marine industries and by a diverse set of customers serving various industrial equipment markets. Gleason has manufacturing operations in Rochester, New York; Rockford, Illinois; Dayton, Ohio; Munich and Ludwigsburg, Germany; Studen, Switzerland; Bangalore; India, and Suzhou, China and has sales and service offices throughout North and South America, Europe and in the Asia-Pacific region.

DSM Engineering Plastics
Kleiss Gears, Inc.
SETCO Precision Spindles
Universal Technical Systems

Related Power Transmission Categories

Injection Molded Plastic Gears
Plastic Chain
Plastic Chain Sprockets
Plastic Gears-Cut
Plastic Gears-Injection Molded

Related Power Transmission Companies

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels

New Power Electric (USA) LLC
Whatever your needs in variable speed applications, you can trust our 200/300/400/500 series PMDC motors. Designed and built under the highest quality process for general industrial needs, our products are there to provide reliable performance for a long time.

Yaskawa America, Inc.
The Drives & Motion Division of Yaskawa America, Inc. manufactures industrial automation equipment. Our products include industrial AC variable speed drives; commercial HVAC drives; servo systems and machine controllers; spindle drives and motors; and low-voltage industrial control switches. These products are used in a variety of industries including automotive, building automation, chemical, food/beverage, irrigation, machine tool, material handling, metal forming, oil/gas, packaging, pharmaceutical, power generation, solar, plastics and rubber, textile, and water/wastewater.

Articles About plastic


1 Maximum Surface Temperature of the Thermoplastic Gear in a Non-Lubricated Plastic-Steel Gear Pair (August/September 1984)

One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation. Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.

2 The Design and Manufacture of Machined Plastic Gears (May/June 1985)

The use of plastic gearing is increasing steadily in new products. This is due in part to the availability of recent design data. Fatigue stress of plastic gears as a function of diametral pitch, pressure angle, pitch line velocity, lubrication and life cycles are described based on test information. Design procedures for plastic gears are presented.

3 Plastic Gear Design Basics (July/August 1996)

Plastic gears are serious alternatives to traditional metal gears in a wide variety of applications. The use of plastic gears has expanded from low-power, precision motion transmission into more demanding power transmission applications. As designers push the limits of acceptable plastic gear applications, more is learned about the behavior of plastics in gearing and how to take advantage of their unique characteristics.

4 Tooth-Bending Effects in Plastic Spur Gears (September/October 2007)

This paper describes the investigation of a steel-and-plastic gear transmission and presents a new hypothesis on the governing mechanism in the wear of plastic gears.

5 The Relative Performance of Spur Gears Manufactured from Steel and PEEK (March/April 2012)

This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.

6 Plastic Gear Standards: A Balancing Act (March/April 2007)

Creating standards for plastic gears calls for a deft touch. The challenge is to set uniform guidelines, yet avoid limiting the creative solutions plastic offers gear designers.

7 Hoechst Technical Polymers to Gather Plastic Gear Materials Data (July/August 1997)

Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.

8 The Design and Manufacture of Plastic Gears Part II (July/August 1985)

Advancements in machining and assembly techniques of thermoplastic gearing along with new design data has lead to increased useage of polymeric materials. information on state of the art methods in fabrication of plastic gearing is presented and the importance of a proper backlash allowance at installation is discussed. Under controlled conditions, cast nylon gears show 8-14 dBA. lower noise level than three other gear materials tested.

9 Deciding When to Go Plastic (July 2014)

Can my metal gear(s) be replaced with plastic gears?

10 High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data (March/April 2010)

This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.

11 Talking Truth to Power: Plastic Gears Taking Back Seat to No One (March/April 2013)

Automotive industry embraces proven yet evolving technology of plastic gears.

12 Plastic: The Not-So-Alternative Technology (July/August 1998)

"We're taking over," says Art Milano. It's a bold statement from the engineering manager of Seitz Corporation, one of the largest manufacturers of injection molded plastic gears, but Milano has reason for his optimism. Plastic gears are big business-probably bigger than most gear industry "insiders" realize.

13 Pushing the Envelope with Plastic (June 2007)

We were delighted to see the plastic gear set pictured on the cover of your March/April issue. UFE played the lead role in its design and manufacture.

14 Virtually No Gear Job Too Small for Precision Plastic Micro-Molder (March/April 2007)

The greenlighting of new product designs specifying micro-sized, plastic gear sets is often dependent upon existing technology and a company’s capabilities to manufacture those gears, and to do so cost-effectively

15 Material Integrity in Molded Plastic Gears and its Dependence on Molding Practices (June 2008)

The quality of molded plastic gears is typically judged by dimensional feature measurements only. This practice overlooks potential deficiencies in the molding process.

16 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

17 Gear Design: Multipoint Properties are Key to Selecting Thermoplastic Materials (November/December 2006)

The palette of thermoplastic materials for gears has grown rapidly, as have the applications themselves. Designers need to be aware of key properties and attributes in selecting the right material.

18 Latest Generation of Quieter Plastic Gears Can Take the Heat (November/December 2005)

Ten years ago, most mainstream gear manufacturers didn't even consider plastics as an option, especially in higher power applications.

19 Plastic Gears--A Growing Industry Still Seeking Respect (March/April 2007)

Forty years ago, the plastics industry was practically in its embryonic phase...

20 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

21 Lubricants and Lubrication of Plastic Gears (September/October 1993)

Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.

22 The Plastic Gear Pay-Off (March/April 2012)

Eliminating noise, weight and wear proves valuable in 2012.

23 New Technology for Stronger Plastic Gears (August 2012)

Gleason-K2 Plastics eliminates weld lines with no machining.

24 A Practical Guide for Molding Better Plastic Geared Transmissions (May/June 2000)

Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing. This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.

25 How to Achieve a Successful Molded Gear Transmission (July/August 2006)

Molded plastic gears have very little in common with machined gears other than the fact that both use the involute for conjugate action.

26 Loaded Behavior of Gears Made of Fiber-Reinforced PA6 (July 2014)

This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting high torque, adding fibers can significantly increase their performance. The particular case of polyamide 6 + 30% glass fibers is studied in this paper.

27 Systematic Approach to Desinging Plastic Spur and Helical Gears (November/December 1989)

Plastic gears are being used increasingly in applications, such as printers, cameras, small household appliances, small power tools, instruments, timers, counters and various other products. Because of the many variables involved, an engineer who designs gear trains on an occasional basis may find the design process to be somewhat overwhelming. This article outlines a systematic design approach for developing injection molded plastic spur and helical gears. The use of a computer program for designing plastic gears is introduced as an invaluable design tool for solving complex gearing equations.

28 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

29 Study of the Correlation Between Theoretical and Actual Gear Fatigue Test Data on a Polyamide (June 2008)

In the past two years DSM has been conducting fatigue tests on actual molded gears in order to provide design data.

30 Injection Molded Innovation (June 2008)

Alternative business strategies from some alternative gear manufacturers.

31 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

32 At the "PEEK" of the Polymer Food Chain (June 2010)

In the hypercompetitive race to increase automobile efficiency, Metaldyne has been developing its balance shaft module line with Victrex PEEK polymer in place of metal gears. The collaborative product development resulted in significant reductions in inertia, weight and power consumption, as well as improvement in noise, vibration and harshness (NVH) performance.

33 The Efficiency Experts (September/October 2010)

Bradley University and Winzeler Gear collaborate on the design and development of an urban light vehicle.

34 Load-Sharing Model for Polymer Cylindrical Gears (November/December 2011)

This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight. Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.

35 Gear Material Risks and Rewards (August 2011)

Technology investments lead to product innovation at gear materials suppliers.

36 Effect of Web & Flange Thickness on Nonmetallic Gear Performance (November/December 1995)

Gears are manufactured with thin rims for several reasons. Steel gears are manufactured with thin rims and webs where low weight is important. Nonmetallic gears, manufactured by injection molding, are designed with thin rims as part of the general design rule to maintain uniform thickness to ensure even post-mold cooling. When a thin-rimmed gear fails, the fracture is thought the root of the gear, as shown in Fig. 1a, rather than the usual fillet failure shown in Fig. 1b.

37 Failure Mechanisms in Plastic Gears (January/February 2002)

Plastics as gear materials represent an interesting development for gearing because they offer high strength-to-weight ratios, ease of manufacture and excellent tribological properties (Refs. 1-7). In particular, there is a sound prospect that plastic gears can be applied for power transmission of up to 10 kW (Ref. 6).

38 Optimizing Plastic Gear Geometry: An Inroduction to Gear Optimization (May/June 2002)

There are numerous engineering evaluations required to design gear sets for optimum performance with regard to torque capacity, noise, size and cost. How much cost savings and added gear performance is available through optimization? Cost savings of 10% to 30% and 100% added capacity are not unusual. The contrast is more pronounced if the original design was prone to failure and not fit for function.

39 Marking Time With Wood (March/April 2000)

Clocks with wooden gears? In these days of gears made from plastic, steel and exotic materials; it is a little unusual to hear about a practical application for wooden gears. But that is exactly what David Scholl, the owner of Changing Times, a Harlingen, TX, clockmaker is offering us.

40 Gear Fashion (May/June 2001)

Combining involute curves and body curves, merging factory and fashion, Winzeler Gear has transformed one of its products into gear haute couture. Winzeler Gear has created a plastic gear dress.

41 A Gear with a Sweet Tooth (July/August 2002)

Gear manufacturers typically use plastic, steel or other metals to make their gears, but Andrew Shotts made his first gears out of sugar and chocolate.

42 Tips for Increasing Power Density in Gear Trains (May/June 1999)

Gear designers today are continually challenged to provide more power in less space and improve gear performance. The following article looks at some of the most common ways to increase the power density or improve the performance of gear trains. The author also takes an in-depth look at the case of a steel worm mating with a plastic helical gear and explores ways to optimize this increasingly common configuration.

43 Generating Precision Spur Gears By Wire EDM (May/June 1996)

Over the past decade, the wire electrical discharge machine (EDM) has become an increasingly important tool for machining non-standard shapes. It has even been used to cut gears and gear cavities for plastic molds. While generally accepted as a quick and versatile method for cutting spur gears, the EDM gear has lacked the precision of a mechanically machined or ground gear. We suspected that many of the errors associated with these gears were caused by inexact setup procedures, poor tool path control and improper cutting parameters. We decided to test the potential for the wire EDM to make the most accurate gear possible.

44 Events (September/October 2005)

The complete Events section from the September/October 2005 issue of Gear Technology, including a profile of the UTS plastic gear course.

45 Deburring & Finishing Gears with Power Brushes (March/April 1989)

Why Brushes? In this age of hi-tech, robots, automatic machines, machining cells, etc., is there a niche somewhere for power brushes? Let me answer by asking another question. What tool does the gear manufacturer have in his arsenal that allows him to deburr green gears, hardened gears, hobbed gears, ground gears and shaved gears? What tool allows him to deburr powder metal gears - green and sintered - brass gears, bronze gears, stainless gears made of exotic materials such as inconel, waspaloy, or hastaloy, and fiber and plastic gears? How about spur gears, helical gears, sprockets, both internal and external splines, clutch teeth and pump gears?

46 Mechanical Behavior and Microstructure of Ausrolled Surfaces in Gear Steels (March/April 1995)

Ausforming, the plastic deformation of heat treatment steels in their metastable, austentic condition, was shown several decades ago to lead to quenched and tempered steels that were harder, tougher and more durable under fatigue-type loading than conventionally heat-treated steels. To circumvent the large forces required to ausform entire components such as gears, cams and bearings, the ausforming process imparts added mechanical strength and durability only to those contact surfaces that are critically loaded. The ausrolling process, as utilized for finishing the loaded surfaces of machine elements, imparts high quality surface texture and geometry control. The near-net-shape geometry and surface topography of the machine elements must be controlled to be compatible with the network dimensional finish and the rolling die design requirements (Ref. 1).

News Items About plastic

1 GW Plastics and ABA-PGT Form Strategic Alliance (July 5, 2007)
GW Plastics and ABA-PGT announced the formation of a global strategic alliance for plastic gear systems and integrated motion transfer sy... Read News

2 Asahi America Introduces Plastic Gear Operator (April 7, 2006)
Plasgear from Asahi America is a thermoplastic gear operator from Asahi America. According to the company’s press release, the P... Read News

3 Fiberfil Acquires Business Unit of DSM Plastics (January 10, 2006)
Fiberfil Engineered Plastics acquired the North American custom compounding unit of DSM Engineering Plastics, effective Dec. 7. Fiber... Read News

4 Magnetic Gearing and Turbine Corp. Releases New Injection Molded Plastic Gears (April 6, 2006)
Magnetic Gearing & Turbine Corporation of Australia annonced the release of a new generation injection moulded magnetic gear. Accordi... Read News

5 KISSsoft Releases Calculation for Shearing Strength for Plastic Worm Wheels (February 17, 2011)
For crossed axis helical gear designs where a worm meshes with a cylindrical worm wheel made of plasti... Read News

6 Ticona Offers Plastic Gear Webinar (January 26, 2012)
Ticona Engineering Polymers will present "High-Precision Molded Plastic Gear Transmissions", an American Gear Manufacturing Ass... Read News

7 Gleason Acquires K2 Plastics (September 7, 2011)
Gleason Corporation has announced it has acquired the assets and business of K2 Plastics, Inc., of Bergen, New York, a producer of precis... Read News

8 Martin Sprocket and Gear Highlights Plastic Capabilities (October 9, 2012)
Martin Sprocket & Gear, Inc. is not only a producer of traditional power transmission products, material handling systems and compone... Read News