Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

plastic gear transmission molded gears - Search Results

Articles About plastic gear transmission molded gears


1 How to Achieve a Successful Molded Gear Transmission (July/August 2006)

Molded plastic gears have very little in common with machined gears other than the fact that both use the involute for conjugate action.

2 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

3 At the PEEK of the Polymer Food Chain (June 2010)

In the hypercompetitive race to increase automobile efficiency, Metaldyne has been developing its balance shaft module line with Victrex PEEK polymer in place of metal gears. The collaborative product development resulted in significant reductions in inertia, weight and power consumption, as well as improvement in noise, vibration and harshness (NVH) performance.

4 The Efficiency Experts (September/October 2010)

Bradley University and Winzeler Gear collaborate on the design and development of an urban light vehicle.

5 Cotta Transmission Installs CMM with Gear Checking Module (July 2010)

Xspect Solutions Provides Wenzel Bridge-Type CMM Equipped with OpenDMIS Software for Basic Gear Measuring Capability with CMM Flexibility.

6 Industry News (October 2013)

The complete Industry News section from the October 2013 issue of Gear Technology.

7 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

8 Optimizing Gear Geometry for Minimum Transmission Error, Mesh Friction Losses and Scuffing Risk Through Computer- Aided Engineering (August 2010)

Minimizing gear losses caused by churning, windage and mesh friction is important if plant operating costs and environmental impact are to be minimized. This paper concentrates on mesh friction losses and associated scuffing risk. It describes the preliminary results from using a validated, 3-D Finite Element Analysis (FEA) and Tooth Contact Analysis (TCA) program to optimize cylindrical gears for low friction losses without compromising transmission error (TE), noise and power density. Some case studies and generic procedures for minimizing losses are presented. Future development and further validation work is discussed.

9 Reaching Out (March/April 2011)

Publisher Michael Goldstein describes the success of Gear Technology's new e-mail newsletter programs.

10 Gear Transmission Density Maximization (November/December 2011)

This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density maximization is also considered.

11 Standards Development: Enclosed Drives (March/April 2011)

Chairman Todd Praneis of Cotta Transmission describes the activities of AGMA's Enclosed Drives technical committee.

12 Hybrid Economy, NASCAR Performance (March/April 2010)

VMT Technologies designs positively engaged, infinitely variable transmission.

13 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

14 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

15 A Further Study on High-Contact-Ratio Spur Gears in Mesh with Double-Scope Tooth Profile Modification (November/December 2008)

This paper will demonstrate that, unlike commonly used low-contact-ratio spur gears, high-contact-ratio spur gears can provide higher power-to-weight ratio, and can also achieve smoother running with lower transmission error (TE) variations.

16 Transmission Error and Noise Emission of Spur Gears (March/April 2007)

Transmission error (TE) is recognized as one of the most important causes of gear acoustic emissions...

17 New Transmissions Drive Automotive Gear Industry (July/August 2006)

News from the major automakers and transmission suppliers.

18 Tooth Flank Corrections of Wide Face Width Helical Gears that Account for Shaft Deflections (January/February 2005)

This paper discusses the influence of tip relief, root relief, load modification, end relief and their combinations on gear stresses and transmission errors due to shaft deflections.

19 Trends in Automobile Transmissions (July/August 2006)

With all the work in transmission development these days, the demand for automobile transmission gears should remain strong for several years, but suppliers will have to be as flexible as possible to keep up with the changes.

20 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

21 Identification of Gear Noise with Single Flank Composite Measurement (May/June 1986)

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

22 Designing Hardened & Ground Spur Gears to Operate With Minimum Noise (May/June 1994)

When designing hardened and ground spur gears to operate with minimum noise, what are the parameters to be considered? should tip and/or root relief be applied to both wheel and pinion or only to one member? When pinions are enlarged and he wheel reduced, should tip relief be applied? What are the effects on strength, wear and noise? For given ratios with enlarged pinions and reduced wheels, how can the gear set sized be checked or adjusted to ensure that the best combination has been achieved?

23 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

24 Effect of Extended Tooth Contact on the Modeling of Spur Gear Transmissions (July/August 1994)

In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears. This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

25 Internet Adventures, Part II powertransmission.com (January/February 1997)

In July of 1996 we introduced the gear community to the Internet in these pages through the Gear Industry Home Page (GIHP). This electronic buyers guide for gear machine tools, tooling, accessories and services has proven to be more popular than we could have envisioned. In our first month, we had over 3,000 hits, and in our third month, we have over 4,500. By our fourth month, we topped the 7,000 mark, and we are on our way to 11,000 hits in November. As our advertisers develop their own home sites in order to offer layers of information about their companies, their products and services, we expect this activity will increase even more.

26 How to Minimize Power Losses in Transmissions, Axles and Steering Systems (September 2012)

By increasing the number of gears and the transmission-ratio spread, the engine will run with better fuel efficiency and without loss of driving dynamics. Transmission efficiency itself can be improved by: using fuelefficient transmission oil; optimizing the lubrication systems and pumps; improving shifting strategies and optimizing gearings; and optimizing bearings and seals/gaskets.

27 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

28 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

29 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

30 High Power Transmission with Case-hardened Gears and Internal Power Branching (January/February 1985)

In the field of large power transmission gear units for heavy machine industry, the following two development trends have been highly influential: use of case hardened gears and a branching of the power flow through two or more ways.

31 Gear Noise and the Sideband Phenomenon (January/February 1987)

Gear noise can be a source of intense annoyance. It is often the primary source of annoyance even when it is not the loudest noise component. This is because of the way it is perceived. Gear noise is a collection of pure tones which the human ear can detect even when they are 10dB lower than the overall noise level. Another reason for our sensitivity to transmission noise is that we associate it with impending mechanical failure.

32 Going to Gear Expo (September 2013)

Like many of you in the gear industry, we’ve been working extremely hard over the past few months getting ready for Gear Expo 2013, which takes place September 17-19 in Indianapolis.

33 Viewpoint (May/June 1987)

Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.

34 The Uses and Limitations of Transmission Error (July/August 1988)

The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.

35 The Relationship of Measured Gear Noise to Measured Gear Transmission Errors (January/February 1988)

Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

36 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.

37 Wind Turbine Market Leads Hansen Transmissions to India (June 2007)

When Belgium-based Hansen Transmissions was under the ownership of Invensys plc in the late 1990s, the parent company was dropping not-so-subtle hints that the industrial gearbox manufacturer was not part of its long-term plans. Yet Hansen’s CEO Ivan Brems never dreamed that, less than a decade later, he would be working for an Indian company.

38 Latest Generation of Quieter Plastic Gears Can Take the Heat (November/December 2005)

Ten years ago, most mainstream gear manufacturers didn't even consider plastics as an option, especially in higher power applications.

39 Gear Design: Multipoint Properties are Key to Selecting Thermoplastic Materials (November/December 2006)

The palette of thermoplastic materials for gears has grown rapidly, as have the applications themselves. Designers need to be aware of key properties and attributes in selecting the right material.

40 Plastic Gears--A Growing Industry Still Seeking Respect (March/April 2007)

Forty years ago, the plastics industry was practically in its embryonic phase...

41 Injection Molded Innovation (June 2008)

Alternative business strategies from some alternative gear manufacturers.

42 Material Integrity in Molded Plastic Gears and its Dependence on Molding Practices (June 2008)

The quality of molded plastic gears is typically judged by dimensional feature measurements only. This practice overlooks potential deficiencies in the molding process.

43 High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data (March/April 2010)

This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.

44 Study of the Correlation Between Theoretical and Actual Gear Fatigue Test Data on a Polyamide (June 2008)

In the past two years DSM has been conducting fatigue tests on actual molded gears in order to provide design data.

45 Plastic Gear Standards: A Balancing Act (March/April 2007)

Creating standards for plastic gears calls for a deft touch. The challenge is to set uniform guidelines, yet avoid limiting the creative solutions plastic offers gear designers.

46 Tooth-Bending Effects in Plastic Spur Gears (September/October 2007)

This paper describes the investigation of a steel-and-plastic gear transmission and presents a new hypothesis on the governing mechanism in the wear of plastic gears.

47 Pushing the Envelope with Plastic (June 2007)

We were delighted to see the plastic gear set pictured on the cover of your March/April issue. UFE played the lead role in its design and manufacture.

48 No Gear Job Too Small (March/April 2007)

The greenlighting of new product designs specifying micro-sized, plastic gear sets is often dependent upon existing technology and a company’s capabilities to manufacture those gears, and to do so cost-effectively

49 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

50 The Design and Manufacture of Plastic Gears Part II (July/August 1985)

Advancements in machining and assembly techniques of thermoplastic gearing along with new design data has lead to increased useage of polymeric materials. information on state of the art methods in fabrication of plastic gearing is presented and the importance of a proper backlash allowance at installation is discussed. Under controlled conditions, cast nylon gears show 8-14 dBA. lower noise level than three other gear materials tested.

51 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

52 The Design and Manufacture of Machined Plastic Gears (May/June 1985)

The use of plastic gearing is increasing steadily in new products. This is due in part to the availability of recent design data. Fatigue stress of plastic gears as a function of diametral pitch, pressure angle, pitch line velocity, lubrication and life cycles are described based on test information. Design procedures for plastic gears are presented.

53 Gear Material Risks and Rewards (August 2011)

Technology investments lead to product innovation at gear materials suppliers.

54 Load-Sharing Model for Polymer Cylindrical Gears (November/December 2011)

This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight. Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.

55 New Technology for Stronger Plastic Gears (August 2012)

Gleason-K2 Plastics eliminates weld lines with no machining.

56 Plastic: The Not-So-Alternative Technology (July/August 1998)

"We're taking over," says Art Milano. It's a bold statement from the engineering manager of Seitz Corporation, one of the largest manufacturers of injection molded plastic gears, but Milano has reason for his optimism. Plastic gears are big business-probably bigger than most gear industry "insiders" realize.

57 Talking Truth to Power: Plastic Gears Taking Back Seat to No One (March/April 2013)

Automotive industry embraces proven yet evolving technology of plastic gears.

58 Deciding When to Go Plastic (July 2014)

Can my metal gear(s) be replaced with plastic gears?

59 Grinding Gears for Racing Transmissions (September/October 2009)

When you push 850 horsepower and 9,000 rpm through a racing transmission, you better hope it stands up. Transmission cases and gears strewn all over the racetrack do nothing to enhance your standing, nor that of your transmission supplier.

60 Loaded Behavior of Gears Made of Fiber-Reinforced PA6 (July 2014)

This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting high torque, adding fibers can significantly increase their performance. The particular case of polyamide 6 + 30% glass fibers is studied in this paper.

61 Hoechst Technical Polymers to Gather Plastic Gear Materials Data (July/August 1997)

Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.

62 Plastic Gear Design Basics (July/August 1996)

Plastic gears are serious alternatives to traditional metal gears in a wide variety of applications. The use of plastic gears has expanded from low-power, precision motion transmission into more demanding power transmission applications. As designers push the limits of acceptable plastic gear applications, more is learned about the behavior of plastics in gearing and how to take advantage of their unique characteristics.

63 The Relative Performance of Spur Gears Manufactured from Steel and PEEK (March/April 2012)

This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.

64 The Plastic Gear Pay-Off (March/April 2012)

Eliminating noise, weight and wear proves valuable in 2012.

65 Maximum Surface Temperature of the Thermoplastic Gear in a Non-Lubricated Plastic-Steel Gear Pair (August/September 1984)

One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation. Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.

66 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

67 Effect of Web & Flange Thickness on Nonmetallic Gear Performance (November/December 1995)

Gears are manufactured with thin rims for several reasons. Steel gears are manufactured with thin rims and webs where low weight is important. Nonmetallic gears, manufactured by injection molding, are designed with thin rims as part of the general design rule to maintain uniform thickness to ensure even post-mold cooling. When a thin-rimmed gear fails, the fracture is thought the root of the gear, as shown in Fig. 1a, rather than the usual fillet failure shown in Fig. 1b.

68 Lubricants and Lubrication of Plastic Gears (September/October 1993)

Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.

69 Optimism in Wind Abounds (January/February 2009)

Big gears and wind turbines go together like bees and honey, peas and carrots, bread and butter and—well, you get the idea. Wind isn’t just big right now, it’s huge. The wind industry means tremendous things for the energy dependent world we live in and especially big things for gear manufacturers and other beleaguered American industries.