Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

quality control - Search Results

Related Companies

Precision Gage Co., Inc.
Precision Gage Co., Inc. is the manufacturer and supplier of the VARI-ROLL and GearMaster Dual Flank Composite Gear Tester.

Related Power Transmission Companies

Circle Gear & Machine Co.
Quality Custom Gearing Complete Machine Shop ? Reverse Engineering ? Breakdown Service Available

Taiwan Precision Gear Corp.
TPG is one professional factory who manufactures all kinds motors, gear box, PMDC motor, drive, clutch, brake, coupling, vibration motor, variable speed drive, disco, right angle worm gear, other power transmission parts.

Articles About quality control


1 Got Lean, Six Sigma - Here's Another Theory (March/April 2009)

Most readers are at least familiar with continuous improvement programs such as lean and six sigma. Perhaps your shop or company is well along in the implementation of one or the other—if not both. But what about theory of constraints (TOC), introduced in Dr. Eliyahu Goldratt’s 1984 book, The Goal? Despite its rather negative-sounding name, this continuous improvement process has much to offer manufacturers of all stripes. And when combined with lean and six sigma, the results can be dramatic. Dr. Lisa Lang, a TOC consultant and speaker, explains why and how in the following Q&A session with Gear Technology.

2 Super-Sized Quality Control (January/February 2014)

It's not easy being big. Maybe that's not exactly how the phrase goes, but it's applicable, particularly when discussing the quality requirements of large gears. The size alone promises unique engineering challenges. BONUS Online Exclusive: Big or Small - Inspection is Key to Success.

3 Checking Large Gears (March/April 1987)

Gear manufacturing schedules that provide both quality and economy are dependent on efficient quality control techniques with reliable measuring equipment. Given the multitude of possible gear deviations, which can be found only by systematic and detailed measuring of the gear teeth, adequate quality control systems are needed. This is especially true for large gears, on which remachining or rejected workpieces create very high costs. First, observation of the gears allows adjustment of the settings on the equipment right at the beginning of the process and helps to avoid unproductive working cycles. Second, the knowledge of deviations produced on the workpiece helps disclose chance inadequacies on the production side: e.g., faults in the machines and tools used, and provides an opportunity to remedy them.

4 Gear Measurement Traceability and Uncertainty (July/August 2000)

Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.

5 Bevel Gear Manufacturing Troubleshooting (March/April 1991)

The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.

6 Applying Process Control to Gear Manufacturing (March/April 1992)

A common goal of gear manufacturers is to produce gearing that is competitively priced, that meets all quality requirements with the minimum amount of cost in a timely manner, and that satisfies customers' expectations. In order to optimize this goal, the gear manufacturer must thoroughly understand each manufacturing process specified, the performance capability of that process, and the effect of that particular process as it relates to the quality of the manufactured gear. If the wrong series of processes has been selected or a specific selected process is not capable of producing a quality part, manufacturing costs are greatly increased.

7 The SERCOS Interface Standard (January/February 1996)

Today motion control systems are migrating from analog to digital technology at an ever increasing rate because digital technology at an ever-increasing rate because digital drives provide performance equal to or exceeding that of analog drives, plus information to run your machine more effectively and manage your quality program and your business. Most of this data is simply not available from analog drives.

8 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

9 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part II (March/April 2014)

Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

10 Sicmat Utilizes NUM CNC Systems (September 2012)

A high-performance, 11-axis CNC system from NUM has enabled machine tool manufacturer Sicmat to create a gear honing machine that sets a new industry standard for post-hardening fine finishing.

11 18 Things You Should Know About SPC for Gears (November/December 1996)

Statistical Precess Control (SPC) and statistical methods in general are useful techniques for identifying and solving complex gear manufacturing consistency and performance problems. Complex problems are those that exist in spite of our best efforts and the application of state-of-the-art engineering knowledge.

12 Quality Gear Inspection - Part II (November/December 1994)

This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.

13 Gear Quality Inspection: How Good is Yours (June/July 2012)

How well you conduct your inspections can be the difference-maker for securing high-value contracts from your customers. And as with most other segments of the gear industry, inspection continues striving to attain “exact science” status. With that thought in mind, following is a look at the state of gear inspection and what rigorous inspection practices deliver—quality.

14 New ANSI-AGMA Accuracy Standards for Gears (March/April 2004)

AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.

15 How's Your Lead Time (July 2007)

The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.

16 Better Gears & Splines With Metrology (July 2007)

What does it mean to make "better" gears? Better gears more closely resemble the intended design parameters.

17 ISO 9000: Global Market Salvation Or A Pig In A Poke (March/April 1994)

ISO 9000 is the latest hot topic in marketing and manufacturing circles. Everyone seems to be talking about it, but few seem to understand it completely. depending on whom one talks to, it's either the greatest thing to hit industry since the assembly line, another cash cow for slick consultants, a conspiracy on the part of Europeans to dominate global markets, or the next necessary step to compete in the global economy of the twenty-first century. It may be all of the above.

18 What is ISO 9000 and Why Should I Care (March/April 1994)

What follows is the first of three articles we will be running on ISO 9000 and what it means for the gear industry. This first article will cover what ISO 9000 is, what some of its benefits - and problems - are, and whether your company should be a candidate for this certification process. In our next issue, we will consider the important question of how, when, and if to hire an ISO 9000 consultant. The final article in this series will discuss ways to save money while streamlining the certification process in your company.

19 Viewpoint - Our Readers Respond (September/October 1994)

I support Clem Miller (Viewpoint May/June) in his skepticism of ISO 9000. The metrology of gears is important, but in the present state of the art, manufacture is more accurate than design.

20 The Frugal Certification Process (July/August 1994)

Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.

21 Choosing An ISO 9000 Consultant: Why, When & How (May/June 1994)

On of the key questions confronting any company considering ISO 9000 certification is, how much is this going to cost? The up-front fees are only the beginning. Dissect the ISO 9000 certification procedure with an eye for hidden costs, and two segments of the process will leap out - the cost of consultants and the cost of making in-house improvements for the sake of passing certification. Most of these costs can be controlled by careful selection f the right consultant in the first place.

22 Industry News (October 2012)

The complete Industry News section from the October 2012 issue of Gear Technology.

News Items About quality control

1 RoboMax System Automates Quality Control (August 27, 2010)
The RoboMax system, developed by Carl Zeiss, does not require an operator and can run fully automatically 24 hours a day, 7 days a week. ... Read News