rattle - Search Results

Articles About rattle

Articles are sorted by RELEVANCE. Sort by Date.

1 Investigation of Gear Rattle Phenomena (September/October 1992)

The acceptance by discerning customers of passenger cars is dependent upon both the actual noise lever and the subjective noise character. The subjective noise character itself can contain, among other features, undesirable noise phenomena which become apparent at certain points in the vehicle operating range. One such critical phenomenon is gear rattle, which is mainly present under low speed, high load conditions. Due to changes in the angular velocity of the crankshaft, gear rattle under driving conditions occurs at the unloaded gears and splines.

2 Rattle: Addressing Gear Noise in a Power Take-off (January/February 2012)

At Muncie Power, the objective of noise and vibration testing is to develop effective ways to eliminate power take-off (PTO) gear rattle, with specific emphasis on PTO products. The type of sound of largest concern in this industry is tonal.

3 The Effect of Flexible Components on the Durability, Whine, Rattle and Efficiency of an Automotive Transaxle Geartrain System (November/December 2009)

Gear engineers have long recognized the importance of considering system factors when analyzing a single pair of gears in mesh. These factors include important considerations such as load sharing in multi-mesh geartrains and bearing clearances, in addition to the effects of flexible components such as housings, gear blanks, shafts and carriers for planetary geartrains. However, in recent years, transmission systems have become increasingly complex—with higher numbers of gears and components—while the quality requirements and expectations in terms of durability, gear whine, rattle and efficiency have increased accordingly.

4 Our Readers Discuss Gear Rattle, Gear Books, and Gear Tech (January/February 1993)

Investigation of Gear Rattle Phenomena The article by Messrs. Rust, Brandl and Thien was very interesting in its description of the problem and of some of the interactions which occur.

5 Gear Backlash Analysis of Unloaded Gear Pairs in Transmissions (June 2016)

A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers’ expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths. A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.