Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

research - Search Results

Related Companies

Kapp Technologies
For over 50 years, KAPP GmbH has been one of the world's premier manufacturers of machine tools for the precision finishing of gears.

Machine Tool Builders
MTB recontrols existing CNC machines and rebuilds manual change gear machines, such as gear shapers, hobbers, and grinders into precision machines by converting mechanical components to motorized servos with multiple axes and spindles using CNC controls. Specializing in Fellows, Fromag-Rapida, Hoglund, Kapp, Liebherr, Lorenz, Module, Pfauter, and Red Ring brands.

ZRIME
Located in Zhengzhou, the capital of Henan Province, Zhengzhou Research Institute of Mechanical Engineering (ZRIME) has undergone 50 years of development. The company was restructured from a former research institute under the Ministry of Mechanical Industry into a large-scale science & technology enterprise administered by the central government of China

Drake Manufacturing Services Co. Inc.
Kleiss Gears, Inc.

Related Power Transmission Companies

ZRIME
Located in Zhengzhou, the capital of Henan Province, Zhengzhou Research Institute of Mechanical Engineering (ZRIME) has undergone 50 years of development. The company was restructured from a former research institute under the Ministry of Mechanical Industry into a large-scale science & technology enterprise administered by the central government of China.

Articles About research


1 Gear Research, The State of the Art (January/February 1985)

Gear research seems to be thriving. Between September 10th and October 17th, 120 papers about gears were presented at three conferences in Milwaukee, Boston, and Washington, to a total audience of about 400. The authors were from nine countries. Slightly more than half of the papers were prepared by authors who live outside the US and Canada.

2 Aerospace Gearing Research - An Update (June 2009)

A look at several American organizations doing cutting edge gear-related research for aerospace applications.

3 Drivetrain Research An Idea Whose Time is Overdue (July/August 1995)

The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.

4 Gear Research Institute (May 2013)

The essence of designing gears is often by necessity risk-averse, given that many of them are used in applications where loss of life is a distinct possibility. The Gear Research Institute (GRI) at The Pennsylvania State University conducts risk reduction testing with the same goal in mind - whether it be gears in fighter jets, Ferris wheels, tanks, or countless other gear-reliant vehicles and machinery.

5 M & M Precision, Penn State & NIST Team Up For Gear Metrology Research (July/August 1997)

In 1993, M & M Precision Systems was awarded a three-year, partial grant from the Advanced Technology Program of the Department of Commerce's National Institute of Standards and Technology (NIST). Working with Pennsylvania State University, M&M embarked on a technology development project to advance gear measurement capabilities to levels of accuracy never before achieved.

6 The OSU Gear and Power Transmission Research Laboratory: Where Innovation Thrives (March/April 2013)

When, in 1980, OSU professor Donald R. Houser created the Gear and Power Transmission Research Laboratory - then known as the Gear Dynamics and Gear and Power Transmission Laboratory (GearLab) - he did so with the seed money provided by just three companies. Thirty-three years out, the lab has continued to grow, impress and—most importantly - succeed; it now boasts a roster of some 50 sponsoring companies and government agencies.

7 State of the Gear Industry 2010 (November/December 2010)

Results of Gear Technology research on trends in employment, outsourcing, machine tool investment and other gear industry business practices.

8 Advances from Aachen - WZL and GRC Contribute to Gear Manufacturing (July/August 2005)

Aachen has long been the center of European gear research.

9 High-Tech Risks and Rewards (June 2009)

Aerospace/Defense contracts offer unique challenges for gear manufacturers.

10 Hoechst Technical Polymers to Gather Plastic Gear Materials Data (July/August 1997)

Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.

11 The 332 Report - Competitive Position of the U.S. Gear Industry (September/October 1990)

In March 1989, the U.S. Trade Representative requested the U.S. International Trade Commission to conduct an investigation and prepare a report on the competitive position of the U.S. gear industry in U.S. and global markets.

12 Gear Noise and the Making of Silent Gears (March/April 1990)

Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.

13 An Invitation To Be A Champion (November/December 1988)

Recent history has taught us that global competition has become tougher and is a major concern of American gear manufacturers from abroad have invaded American markets with products designed in an environment where management of technology has been practiced effectively. If American companies intend to compete in the changing world market, they must acquire the technologies that will allow them to do so.

14 High Precision, High Stakes (September/October 2010)

Delta Research bets big on the future of gear-making technology.

15 Steadfast and Streamlined: Can Lean Soften the Economic Blow (August 2009)

Two high-volume gear production cells grace the shop floor at Delta Research Corporation in Livonia, Michigan. Thanks to lean manufacturing, these cells have never shipped a defective part to a customer since they were developed over three years ago.

16 Chiming in on Gear Noise: Three Experts Have their Say (August 2011)

It is said that “The squeaky wheel gets the grease.” Ok, but what about gear noise? We talked to three experts with considerable knowledge and experience in this area.

17 Balance is Critical - Monitoring Essential (November/December 1986)

These are changing times for industry. Trauma and uncertainty are always a part of change, and change is not always for the better. Change is usually forced, most frequently by competition. Our competitive free enterprise system should be able to respond to competition because that's its basis. These are critical years. If we do not respond effectively to change and competition, it could be disasterous.

18 INFAC Reports on Recent Hobbing and Heat Treating Experiments (July/August 1995)

Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.

19 The 332 Report (September/October 1990)

In May of this year the U.S. International Trade Commission made public its Report to the President on the condition of the U.S. gear industry. This 200+ page document is the result of a two-year study by the commission, with the help of the AGMA staff and members. It is the most comprehensive and current analytical coverage of the industry conditions and tends presently available. Because of the importance of this report to the industry, GEAR TECHNOLOGY is devoting a good portion of this issue to reprinting the Executive Summary for our readers.

20 Optimization of a Process Chain for Gear Shaft Manufacturing (March/April 2013)

The research presented here is part of an ongoing (six years to date) project of the Cluster of Excellence (CoE). CoE is a faculty-wide group of researchers from RWTH Aachen University in Aachen (North Rhine-Westphalia). This presentation is a result of the group’s examination of "integrative production technology for high-wage countries," in which a shaft for a dual-clutch gearbox is developed.

21 It's All About the Science at Gear Research Institute (November/December 2006)

Interview with Dr. Suren Rao, managing director of the Gear Research Institute.

22 Multi-Metal Composite Gear-Shaft Technology (January/February 1995)

A research program, conducted in conjunction with a U.S. Army contract, has resulted in the development of manufacturing technology to produce a multi-metal composite gear/shaft representing a substantial weight savings compared to a solid steel component. Inertia welding is used to join a steel outer ring to a light-weight titanium alloy web and/or shaft through the use of a suitable interlayer material such as aluminum.

23 Heat Treating Challenges for the Future (March/April 1996)

The heat treating of gears presents a difficult challenge to both the heat treater and the gear manufacturer. The number and variety of variables involved in the manufacturing process itself and the subsequent heat treating cycle create a complex matrix of factors which need to be controlled in order to produce a quality product. A heat treater specializing in gears or a gear manufacturer doing his own heat treating must have a clear understanding of these issues in order to deliver a quality product and make a profit at the same time. The situation also presents a number of areas that could benefit greatly from continued research and development.

24 Gears On Film (November/December 1996)

In our unceasing attempt to further educate our readers - and find new and creative ways to waste time at work - the Addendum staff has spent many long hours (and many dollars on popcorn) to bring you our latest research on gears in film.

25 Come See Us In Detroit (September/October 1991)

October is the time. Detroit is the place. AGMA Gear Expo '91 is the event. Cobo Center in downtown Detroit is where you will want to be in October if you have any interest in gear products, manufacturing, or research.

26 Are You Ready to Choose An Advertising Agency (March/April 1991)

Countless research studies confirm this fact: Companies that advertise aggressively during a recession will flourish after the economic tide turns. Regardless of company size, effective advertising generally requires the services of an agency, and under current economic conditions, you may need one now more than ever. The question is, how do you go about getting the right one for your company.

27 Looking To The Future - Part II (November/December 1990)

Beginning with our next issue, some of the promised changes in format for Gear Technology will begin showing up in these pages. As part of our commitment to provide you with important information about the gear and gear products industry, we are expanding our coverage. In addition to continuing to publish some of the best results of gear research and development throughout the world, we will be adding special columns covering vital aspects of the gearing business.

28 The Lubrication of Gears - Part 1 (March/April 1991)

This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.

29 Eddy Current Examination of Gear Systems (May/June 1997)

Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.

30 Technological Potential and Performance of Gears Ground by Dressable CBN Tools (March/April 2014)

Dressable vitrified bond CBN grinding tools combine the advantages of other common tool systems in generating gear grinding. Yet despite those technological advantages, there is only a small market distribution of these grinding tools due to high tool costs. Furthermore, scant literature exists regarding generating gear grinding with dressable CBN. This is especially true regarding the influence of the grinding tool system on manufacturing-related component properties. The research objective of this report is to determine the advantages of dressable CBN tools in generating gear grinding.

31 The Submerged Insuction Hardening of Gears (March/April 2001)

The tooth-by-tooth, submerged induction hardening process for gear tooth surface hardening has been successfully performed at David Brown for more than 30 years. That experience - backed up by in-depth research and development - has given David Brown engineers a much greater understanding of, and confidence in, the results obtainable from the process. Also, field experience and refinement of gear design and manufacturing procedures to accommodate the induction hardening process now ensure that gears so treated are of guaranteed quality.

32 Large Scores and Radial Cracks on Case-Hardened Worms (May/June 2003)

In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.

33 High-Performance Sintered-Steel Gears for Transmissions and Machinery: A Critical Review (August 2012)

Except for higher-end gear applications found in automotive and aerospace transmissions, for example, high-performance, sintered-steel gears match wrought-steel gears in strength and geometrical quality. The enhanced P/M performance is due largely to advances in powder metallurgy over last two decades, such as selective surface densification, new materials and lubricants for high density and warm-die pressing. This paper is a review of the results of a decade of research and development of high- performance, sintered-steel gear prototypes.

34 Robotic Automated Deburring of Aerospace Gears (January/February 2001)

This report presents some interim results from an ongoing project being performed by INFAC, the Instrumented Factory for Gears. The purposes of this initial phase of the project were to demonstrate the feasibility of robotic automated deburring of aerospace gears, and to develop a research agenda for future work in that area.

35 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

36 Production Increase When Hobbing with Carbide Hobs (January/February 1998)

We are all looking for ways to increase production without sacrificing quality. One of the most cost-effective ways is by improving the substrate material of your hob. Solid carbide hobs are widely used in many applications throughout the world. LMT-Fette was the first to demonstrate the use of solid carbide hobs in 1993 on modern high-speed carbide (HSC) hobbing machines. Since then the process of dry hobbing has been continuously improving through research and product testing. Dry hobbing is proving to be successful in the gear cutting industry as sales for dry hobbing machines have steadily been rising along with the dramatic increase in sales of solid carbide hobs.

37 The Gallery of Fame: A Tribute to Gear Pioneers (March/April 1999)

The Gear Research Laboratory of the University of Illinois at Chicago is home to a unique tribute to gear pioneers from around the world, the Gallery of Fame. The gallery is the brainchild of the laboratory director, Professor Faydor L. Litvin. The Gallery was begun in 1994 an dis a photographic tribute to those gear company founders, inventors and researchers who devoted their careers to the study and development of gears.

38 Where Did All the Displaced Manufacturing Workers Go (August 2013)

Following is a report from The Manufacturers Alliance for Productivity and Innovation (MAPI). Founded in 1933, the alliance contributes to the competitiveness of U.S. manufacturing by providing economic research, professional development, and an independent, expert source of manufacturing information.

39 Application of Gears with Asymmetric Teeth in Turboprop Engine Gearbox (January/February 2008)

This paper describes the research and development of the first production gearbox with asymmetric tooth profiles for the TV7-117S turboprop engine. The paper also presents numerical design data related to development of this gearbox.

40 Evaluation of Bending Strength of Carburized Gears (May/June 2004)

The aim of our research is to clearly show the influence of defects on the bending fatigue strength of gear teeth. Carburized gears have many types of defects, such as non-martensitic layers, inclusions, tool marks, etc. It is well known that high strength gear teeth break from defects in their materials, so it’s important to know which defect limits the strength of a gear.

41 In-Situ Measurement of Stresses in Carburized Gears via Neutron Diffraction (May 2009)

This paper presents the results of research directed at measuring the total stress in a pair of statically loaded and carburized spur gears. Measurements were made to examine the change in total stress as a function of externally applied load and depth below the surface.

42 State of the Gear Industry 2007 (November/December 2007)

Results of research on trends in employment, outsourcing, machine tool investment and other gear industry business practices.

43 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

44 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

45 State of the Gear Industry 2008 (November/December 2008)

Results of research on trends in employment, outsourcing, machine tool investment and other gear industry business practices.

46 Gear Expo 2009 Product Preview (September/October 2009)

Sure, Gear Expo undoubtedly has a ton to offer attendees in education, research and networking alone, but what really draws the crowd in are the physical products and technology on display from exhibitors. Otherwise it would just be another technical meeting or social reception—and AGMA could save a few bucks on space to say the least.

47 Industry Forum (November/December 1985)

One of the current research activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.

48 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

49 Effects on Rolling Contact Fatigue Performance (January/February 2007)

This article summarizes results of research programs on RCF strength of wrought steels and PM steels.

50 Helical Gears With Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact (July/August 1987)

Circular arc helical gears have been proposed by Wildhaber and Novikov (Wildhaber-Novikov gears). These types of gears became very popular in the sixties, and many authors in Russia, Germany, Japan and the People's Republic of China made valuable contributions to this area. The history of their researches can be the subject of a special investigation, and the authors understand that their references cover only a very small part of the bibliography on this topic.

51 The Uses and Limitations of Transmission Error (July/August 1988)

The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.

52 Gear Finishing with a Nylon Lap (September/October 2005)

The objective of this research is to develop a new lapping process that can efficiently make tooth flanks of hardened steel gears smooth as a mirror.

53 Identification and Correction of Damaging Resonances in Gear Drives (August/September 1984)

As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines finite element techniques with experimental signature and modal analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how premature bearing failures were eliminated by detuning the torsional oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.

54 Editorial (May/June 1984)

Over the years, we have traveled extensively throughout the industrialized world, and became increasingly aware of the availability of enormous amounts of technical writing concerning research, experiments, and techniques in the gear manufacturing field. New manufacturing methods, materials, and machines were continuously being developed, but the technical information about them was not readily available to those that could best use it. There was no central source for disseminating this knowledge.

55 Gear Expo 2011 - Product Previews (October 2011)

There will be plenty of time to talk shop, learn about the latest educational and research endeavors and network with peers. But the real reason the gear industry comes together every two years is to see all the new products and technology offerings.

56 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

57 NASA's Return to Flight (May 2007)

Gear specialists at the NASA Glenn Research facility helped determine it was safe for the space shuttle to fly again.

58 Automated Acoustic Intensity Measurements and the Effect of Gear Tooth Profile on Noise (March/April 1988)

The NASA Lewis Research Center investigated the effect of tooth profile on the acoustic behavior of spur gears through experimental techniques. The tests were conducted by Cleveland State University (CSU) in NASA Lewis' spur gear testing apparatus. Acoustic intensity (AI) measurements of the apparatus were obtained using a Robotic Acoustic Intensity Measurement System (RAIMS). This system was developed by CSU for NASA to evaluate the usefulness of a highly automated acoustic intensity measurement tool in the reverberant environment of gear transmission test cells.

59 Hybrid Gear Preliminary Results: Application of Composites to Dynamic Mechanical Components (May 2013)

Composite spur gears were designed, fabricated and tested at NASA Glenn Research Center. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The hybrid gear was tested against an all-steel gear and against a mating hybrid gear. Initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

News Items About research

1 British Gear Association Announces Two Research Projects (April 12, 2010)
The first of two ongoing research projects the British Gear Association (BGA) is working on focuses on reducing the micropitting wear rat... Read News

2 Gary Kimmet Appointed President of Gear Research Institute (February 20, 2007)
Gary Kimmet, vice president of worldwide sales and marketing at Gleason Corp., was appointed president of the Gear Research Institute. ... Read News

3 Balzers Begins New Coating Research (December 22, 2003)
Balzers, along with cooperating partners Plansee AG, the Montan University Leoben and University of Innsbruck, began developing new thin ... Read News

4 Delta Research, Tifco Gage and Gear Hires New Sales Rep (July 27, 2007)
Delta Research and TIFCO Gage & Gear announced the hiring of Tony Werschky to their sales team.  With over 12 years of sales exp... Read News

5 Questek to Serve as Research Partner for ALMMII (March 11, 2014)
The White House announced on Tuesday, February 25nd, the establishment of the American Lightweight Materials Manufacturing Innovation Ins... Read News

6 QuesTek Innovations Wins Research Project (December 9, 2010)
QuesTek Innovations LLC has been awarded a Small Business Innovation Research (SBIR) Phase II project from the U.S. Army to demonstrate t... Read News

7 IMS Research Analyzes Geared Product Shipments (December 27, 2012)
Shipments of precision geared products (gearboxes and geared motors with backlash ratings of less than 20 arcminutes) were nearly 80 perc... Read News