Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

space shuttle safety testing - Search Results

Articles About space shuttle safety testing


1 NASA's Return to Flight (May 2007)

Gear specialists at the NASA Glenn Research facility helped determine it was safe for the space shuttle to fly again.

2 Down By The Old Mill Stream (March/April 1997)

Back in the days when our great, great, great, etc., grandaddies were designing gears, one of the most common materials in use was wood. For fairly obvious reasons, we don't see too many wooden gears around anymore. But there are a few.

3 Single-Flank Testing (October/November 1984)

It was very interesting to see Robert Smith's article on single-flank testing of gears...

4 Viewpoint (May/June 1987)

Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.

5 Single Flank Testing of Gears (May/June 1984)

Presumably, everyone who would be interested in this subject is already somewhat familiar with testing of gears by traditional means. Three types of gear inspection are in common use: 1) measurement of gear elements and relationships, 2) tooth contact pattern checks and 3) rolling composite checks. Single Flank testing falls into this last category, as does the more familiar Double Flank test.

6 Identification of Gear Noise with Single Flank Composite Measurement (May/June 1986)

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

7 Accelerating Validation Testing (January/February 2012)

Bringing new or improved products to market sooner has long been proven profitable for companies. One way to help shorten the time-to-market is to accelerate validation testing. That is, shorten the test time required to validate a new or improved product.

8 New Approaches in Roll Testing Technology of Spiral Bevel and Hypoid Gear Sets (May/June 2005)

This paper presents a new approach in roll testing technology of spiral bevel and hypoid gear sets on a CNC roll tester applying analytical tools, such as vibration noise and single-flank testing technology.

9 High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data (March/April 2010)

This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.

10 Flank Breakage on Gears for Energy Systems (November/December 2011)

Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial applications.

11 The Uses and Limitations of Transmission Error (July/August 1988)

The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.

12 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

13 Large Pinions for Open Gears - The Increase of Single Mesh Load (January/February 2013)

This paper introduces mandatory improvements in design, manufacturing and inspection - from material elaboration to final machining - with special focus on today's large and powerful gearing.

14 Hardness Testing (May 2013)

This back-to-basics article describes the main methods used for hardness testing of gears: Rockwell, Brinell, Vickers and Knoop.

15 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part I (January/February 2014)

Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

16 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part II (March/April 2014)

Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

17 Do No Destructive Testing (January/February 2013)

An overview of nondestructive testing and its importance in the manufacture of big gears.

18 Eddy Current Examination of Gear Systems (May/June 1997)

Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.

19 Full-Load Testing of Large Gearboxes Using Closed-Loop Power Circulation (September/October 1991)

This method of testing large gearboxes or, indeed, any power transmission element, had numerous advantages and offers the possibility of large savings in time, energy, and plant, if the overall situation is conducive to its use. This usually requires that several such units need to be tested, and that they can be conveniently connected to each to each other in such a way as to form a closed-loop drive train. No power sink is required, and the drive input system has only to make up power losses. The level of circulating power is controlled by the torque, which is applied statically during rotation, and the drive speed. Principles, advantage, and limitations are described, together with recent experiences in the only known large-scale usage of this technique in Australia.

20 SPC Acceptance of Hobbing & Shaping Machines (September/October 1991)

Today, as part of filling a typical gear hobbing or shaping machine order, engineers are required to perform an SPC acceptance test. This SPC test, while it is contractually necessary for machine acceptance, is not a machine acceptance test. It is a process capability test. It is an acceptance of the machine, cutting tool, workholding fixture, and workpiece as integrated on the cutting machine, using a gear measuring machine, with its work arbor and evaluation software, to measure the acceptance elements of the workpiece.

21 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

22 Minimizing Backlash in Spur Gears (May/June 1994)

simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.

23 In-Situ Measurement of Stresses in Carburized Gears via Neutron Diffraction (May 2009)

This paper presents the results of research directed at measuring the total stress in a pair of statically loaded and carburized spur gears. Measurements were made to examine the change in total stress as a function of externally applied load and depth below the surface.

24 Single Flank Data Analysis and Interpretation (September/October 1985)

Much of the information in this article has been extracted from an AGMA Technical Paper, "What Single Flank Testing Can Do For You", presented in 1984 by the author

25 Hobbing Precise, Uniform End Chamfers (March/April 2004)

The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.

26 SARJ Repairs Show Promise for Space Station Solar Power (January/February 2009)

Much has happened since we last reported on the malfunctioning solar array rotary joint (SARJ) attached to the International Space Station. Space shuttle Endeavour dropped in for a two-week visit in November during which repairs were made and invaluable data collected.

27 Blue Skies for Aerospace Parts Manufacturing (March/April 2006)

Aerospace manufacturing has seen quite a turnaround in the past few years. The world's manufacturers of airplanes, helicopters, missiles, space vehicles and satellites are all extremely busy right now--and that's keeping quite a few gear manufacturers busy as well.

28 Space Station Solar Power Compromised by Balky SARJ Unit (March/April 2008)

Undue vibrations, power spikes and grit give NASA pause.

29 Gear Failure Analysis Involving Grinding Burn (January/February 2009)

When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing process when control of the heat generation at the surface is lost.

30 Aerospace Gearing Research - An Update (June 2009)

A look at several American organizations doing cutting edge gear-related research for aerospace applications.

31 Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

32 Repair via Isotropic Superfinishing of Aircraft Transmission Gears (May 2009)

The objective of this paper is to demonstrate that transmission gears of rotary-wing aircraft, which are typically scrapped due to minor foreign object damage (FOD) and grey staining, can be repaired and re-used with signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated in this project that this surface damage can be removed while maintaining OEM specifications on gear size, geometry and metallurgy. Further, scrap CH-46 mix box spur pinions, repaired by the ISF process, were subjected to gear tooth strength and durability testing, and their performance compared with or exceeded that of new spur pinions procured from an approved Navy vendor. This clearly demonstrates the feasibility of the repair and re-use of precision transmission gears.

33 High-Tech Risks and Rewards (June 2009)

Aerospace/Defense contracts offer unique challenges for gear manufacturers.

34 Gearbox Speed Reducer Helps Fan Technology for "Greener" Jet Fuel Efficiency (August 2008)

Today’s ever-evolving global economic engine is, in many ways, a wonderful phenomenon; you know—a rising-tide-lifting-all-boats, trickle-down-theory-of-economics dynamic at work.

35 Analysis and Testing of Gears with Asymmetric Involute Tooth Form and Optimized Fillet Form for Potential Application in Helicopter Main Drives (June/July 2011)

Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.

36 Boom or Bust - Are You in the Right Markets (June/July 2013)

Over the past few months we've talked with a lot of gear manufacturers. Many of them tell us business is strong, while others are struggling with reduced demand. The difference between them isn't so much in the quality of their manufacturing operations, but rather trends in the end markets they serve.

37 An Experimental Investigation of Aerospace-Quality Gears Operating in Loss-of-Lubrication Condition (August 2013)

This work establishes a baseline for aerospace spur gear behavior under oil-off conditions. The collected test results document a different oil-off time, dictated by material used.

38 Application Analysis (January/February 1993)

Questions: I have heard the terms "safety factor," "service factor," and "application factor" used in discussing gear design. what are these factors an dhow do they differ from one another? Why are they important?

39 Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence on Material, Design and Manufacturing Parameters (November/December 2009)

A single tooth bending (STB) test procedure has been developed to optimally map gear design parameters. Also, a test program on case-carburized, aerospace standard gears has been conceived and performed in order to appreciate the influence of various technological parameters on fatigue resistance and to draw the curve shape up to the gigacycle region.

40 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

41 Tooth Modification and Spur Gear Tooth Strain (September/October 1996)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gear box. Reduction of this noise is a NASA and U.S. Army goal.

42 It's No American Dream: Pratt & Whitney GTF Engine Now a Reality... (November/December 2011)

In the August 2008 issue of Gear Technology, we ran a story (“Gearbox Speed Reducer Helps Fan Technology for ‘Greener” Jet Fuel Efficiency’) on the then ongoing, extremely challenging and protracted development of Pratt & Whitney’s geared turbofan (GTF) jet engine.

43 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

44 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

45 Grinding Induced Changes in Residual Stresses of Carburized Gears (March/April 2009)

This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.