Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

standards - Search Results

Related Companies

All Metals & Forge Group, LLC
All Metals & Forge produces rings, flanges, gear blanks, single and double hubs, trunnions, bevel gear blanks, couplings, seamless rolled rings, rims, center hubs, sleeves, gear blanks, discs (pancake forgings), pinion shafts, step-downs, spindles, rack forgings in gear quality carbon and alloy steels with through-hardening, carburizing and bearing quality grades with forged-in steps to save on machining. Shafts are available up to 45-feet-long and 50,000 pounds and the company can produce part weights from under 100 pounds to more than 30 tons for the gear industry.

DTR Corp. (formerly Dragon Precision Tools)
DTR offers a complete line of coarse pitch to fine pitch hobs including involute, worm, chain sprocket, timing pulley, serration, parallel spline or special tooth shape, shaper cutters and milling cutters for auto, aerospace, wind, mining, construction and other industrial gear cutting applications.

ECM USA
ECM Technologies started manufacturing heat-treatment furnaces in 1928. Since that time, ECM personnel have always been completely committed to extending their knowledge in the field of temperature control, high pressures, vacuum and the behavior of materials. This expertise, on an industrial scale, has always been enriched by our close partnership with furnace users, engineers, heat treat engineers and developers. Today, our knowledge base is at the core of all our customers' production lines. It is this concern for caring and listening, combined with our passion for our profession, which has forged ECM Technology and ECM USA’s recognized spirit of innovation.

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Pentagear Products
Pentagear, a builder of special machines and automated systems for over 50 years, offers the ND430 Next Dimension® Gear Measurement System. The Next Dimension® has been designed with the latest in motion control technology.

Precision Gage Co., Inc.
Precision Gage Co., Inc. is the manufacturer and supplier of the VARI-ROLL and GearMaster Dual Flank Composite Gear Tester.

Presrite Corporation
Presrite manufactures net and near-net forgings for a wide range of industries in countries around the world. Its parts are used in the transmissions, engines and undercarriages of track-type tractors, excavators, wheel loaders and other off-highway vehicles. Presrite institutes an internal program designed to increase performance and quality levels while better controlling costs. Called ?6 SIGMA,? the program involves setting goals, collecting data, and then measuring and analyzing the results.

R.E. Smith & Co.
Over 60 years experience in the gear industry. Over 20 years consulting experience in all types of industries. Over 140 different clients with applications from tiny camera gears to large hydro-electric plant drive gears. We have published numerous articles and technical papers in the area of gear metrology, noise, and transmission error (single flank composite) testing.

Solar Atmospheres
Solar Atmospheres specializes in vacuum heat treating, vacuum nitriding, vacuum brazing as well as vacuum carburizing services. With processing expertise and personalized service, Solar will process your small or large parts efficiently with our unique range of 40 vacuum furnaces. Sizes range from lab furnaces to the world's largest commercial vacuum furnace.

Steelmans Broaches Pvt. Ltd.
Manufacturers and Exporters of Push and Pull style Spline, Serration, Keyway, Surface, Standard Broaches and Broach Sets. We also manufacture Gear Hobs, Gear Cutters, Serration Cutters,Gear Shaper Cutter, Shaving Cutters , Milling Cutters....

Drake Manufacturing Services Co. Inc.
Universal Technical Systems

Related Power Transmission Companies

BRECOflex CO., L.L.C.
BRECOflex CO., L.L.C. ? The world leader in the polyurethane timing belt industry sets higher standards with new state-of-the-art products. BRECOflex timing belts, pulleys and accessories are scientifically designed and manufactured for undeviatin...

C&U Americas, LLC
C&U Bearings are used by some of the world’s leading manufacturers and service providers in a wide variety of applications. Every C&U Bearing is made to exacting standards to deliver the ultimate in the precision, performance, and quality.

Midwest Gear & Tool, Inc.
With more than 20 years in gear manufacturing, Midwest Gear & Tool has an elaborate straight and spiral bevel gear manufacturing capability. We also manufacture a complete line of hydraulic, electric and manual transmissions and reducers. We m...

Ronson Gears Pty. Ltd.
Established in 1954 Ronson Gears, is your English speaking and English thinking Asia-Pacific alternative for Precision Gears and Gear Assemblies. Doing business internationally for almost 60 years, Ronson Gears has garnered a reputation for quality, delivery and first-class customer service.

ZZN Transmission Plant
The ZZN Transmission Plant has over 30 years of experience in manufacturing powertrain components. Its production facilities and highly qualified staff guarantee the world’s top quality products. Numerically controlled machines, machining centers, electron beam vacuum welding center and modern heat treatment equipment enable the manufacture of high quality products.

Articles About standards


1 A Comparison of ISO 4156-ANSI B92.2M - 1980 With Older Imperial Standards (September/October 1994)

The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.

2 AGMA Responds to Gear Standards Article (January/February 1991)

The authors of last issue's article comparing AGMA, ISO and BS methods for Pitting Resistance Ratings are commended. Trying to compare various methods of rating gears is like hitting a moving target in a thick forest. The use of different symbols, presentations, terminology, and definitions in these standards makes it very difficult. But the greatest problem lies with the authors' use of older versions of these documents. ISO drafts and AGMA standards have evolved at the same time their work was accomplished and edited.

3 Review of Gear Standards - Part II (January/February 1991)

In Part I differences in pitting ratings between AGMA 218, the draft ISO standard 6336, and BS 436:1986 were examined. In this part bending strength ratings are compared. All the standards base the bending strength on the Lewis equation; the ratings differ in the use and number of modification factors. A comprehensive design survey is carried out to examine practical differences between the rating methods presented in the standards, and the results are shown in graphical form.

4 New ANSI-AGMA Accuracy Standards for Gears (March/April 2004)

AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.

5 AGMA, ISO, and BS Gear Standards Part I - Pitting Resistance Ratings (November/December 1990)

A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formulae and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.

6 AGMA and ISO Accuracy Standards (May/June 1998)

The American Gear Manufacturers Association (AGMA) is accredited by the American National Standards Institute (ANSI) to write all U.S. standards on gearing. However, in response to the growing interest in a global marketplace, AGMA became involved with the International Standards Organization (ISO) several years ago, first as an observer in the late 1970s and then as a participant, starting in the early 1980s. In 1993, AGMA became Secretariat (or administrator) for Technical Committee 60 of ISO, which administers ISO gear standards development.

7 Developing Flexible Couplings Standards (May 2011)

AGMA Flexible Couplings committee chairman Glenn C. Pokrandt gives an update about standards and other documents under development.

8 Raising the Standards (August 2010)

Dr. Phil Terry, chairman of the AGMA Technical Division Executive Committee, talks about the standards-making process.

9 Plastic Gear Standards: A Balancing Act (March/April 2007)

Creating standards for plastic gears calls for a deft touch. The challenge is to set uniform guidelines, yet avoid limiting the creative solutions plastic offers gear designers.

10 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

11 How Gear Standards are Written (September 2013)

The new chairman of the AGMA Technical Division Executive Committee explains what's involved in the process of developing technical standards at the AGMA.

12 The Gear Standards Challenge (September/October 1997)

Who wants or needs technical details about gearing? Who cares about it? Three out of every four people who are reading this magazine make up at least 75% of those who have an interest in the subject. The members of AGMA, EUROTRANS, JGMA and JSIM have an interest. All the people attending the Gear Expo in Detroit have an interest. Clearly, however, the people with the most pressing interest in our industry are our customers, the end users of gear products. The unfortunate reality, though, is that in many cases, these customers don't even know that's what they want.

13 Gear Metrology Standards and ISO 9000 (May/June 1994)

I noted with interest the beginning of Gear Technology's three-part series on ISO 9000 certification. I also recently attended Brown & Sharpe's/Leitz gear metrology seminar. Both events caused me to smile and reflect.

14 Comparing Standards (September/October 1998)

One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.

15 New Standards for Large Ring Gears for Mills, Kilns (September 2013)

Methods of examining large ring gear teeth to detect surface breaking discontinuities have often been time-consuming and limited in terms of data collected. Methods such as visual and magnetic particle inspection can miss critical discontinuities. However, a new ASTM international standard provides a more effective method for gear examination using eddy current array, a technology that has been widely used but, until now, not standardized.

16 AGMA & MPIF Develop Standards, Information Sheet for Powder Metal Gears (September/October 1996)

AGMA and members of the Metal Powder Industries Federation (MPIF) are three years into a joint project to develop specifications and an information sheet on rating powder metal gears. According to committee vice chairman Glen A. Moore of Burgess-Norton Mfg. Co., the first phase of the project, the publication of AGMA Standard "6009-AXX, Specifications for Powder Metallurgy Gears," should be completed in late 1996 or early 1997.

17 Gear Standards and ISO GPS (October 2013)

In today’s globalized manufacturing, all industrial products having dimensional constraints must undergo conformity specifications assessments on a regular basis. Consequently, (standardization) associated with GD&T (geometrical dimensioning and tolerancing) should be un-ambiguous and based on common, accepted rules. Of course gears - and their mechanical assemblies - are special items, widely present in industrial applications where energy conversion and power transmission are involved.

18 Globalization Brings AGMA, ISO Standards Closer (May/June 2004)

“The gear marketplace is a global marketplace.” Bill Bradley says it easily, with no special emphasis. The vice president of AGMA’s technical division sees the statement as an obvious fact.

19 Writing the Standards (January/February 2011)

Gary A. Bish, director of product design technology for Horsburgh & Scott, discusses his role as chairman of the AGMA mill gearing committee.

20 Standards Development: Enclosed Drives (March/April 2011)

Chairman Todd Praneis of Cotta Transmission describes the activities of AGMA's Enclosed Drives technical committee.

21 An International Wind Turbine Gearbox Standard (July 2009)

Industrial gear standards have been used to support reliability through the specification of requirements for design, manufacturing and verification. The consensus development of an international wind turbine gearbox standard is an example where gear products can be used in reliable mechanical systems today. This has been achieved through progressive changes in gear technology, gear design methods and the continual development and refinement of gearbox standards.

22 Application and Improvement of Face Load Factor Determination Based on AGMA 927 (May 2014)

The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.

23 Comparison of Rating Trends in AGMA Versus ISO (May/June 2004)

As the international business community grows closer together, the need for understanding differences between national and international gear rating standards becomes increasingly important for U.S. gear manufacturers competing in the world market.

24 Introduction to ISO 6336 What Gear Manufacturers Need to Know (July/August 1998)

ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.

25 The Devil Is in the Details (October 2013)

A response to the September 2013 Voices piece on how gear standards are written, from one who's been there.

26 Standard Issues (November/December 1996)

Standards are unlike gears themselves: mundane, but complex, ubiquitous and absolutely vital. Standards are a lingua franca, providing a common language with reference points for evaluating product reliability and performance for manufacturers and users. The standards development process provides a scientific forum for discussion of product design, materials and applications, which can lead to product improvement. Standards can also be a powerful marketing tool for either penetrating new markets or protecting established ones.

27 Allowable Contact Stresses in Jacking Gear Units Used in the Offshore Industry (May 2010)

An offshore jack-up drilling rig is a barge upon which a drilling platform is placed. The barge has legs that can be lowered to the sea floor to support the rig. Then the barge can be “jacked up” out of the water, providing a stable work platform from which to drill for oil and gas. Jack-up drilling rigs were first introduced in the late 1950s. Rack-and- pinion-type jack-up units were introduced soon after that and have dominated the industry ever since.

28 Wind Standard Closer to Completion (March/April 2011)

Faithful Gear Technology readers may recall that our July 2009 issue contained an update of the deliberations provided by Bill Bradley. Now, almost two years later, there is an ISO/IEC wind turbine gearbox standard out for draft international standard ballot (ballot closes 2011-05-17).

29 Towards an Improved AGMA Accuracy Classification System on Double-Flank Composite Measurements (June/July 2012)

AGMA introduced ANSI/AGMA 2015–2–A06— Accuracy Classification System: Radial System for Cylindrical Gears, in 2006 as the first major rewrite of the double-flank accuracy standard in over 18 years. This document explains concerns related to the use of ANSI/AGMA 2015–2–A06 as an accuracy classification system and recommends a revised system that can be of more service to the gearing industry.

30 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

31 Planet Carrier Design (January/February 2014)

With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?

32 The SERCOS Interface Standard (January/February 1996)

Today motion control systems are migrating from analog to digital technology at an ever increasing rate because digital technology at an ever-increasing rate because digital drives provide performance equal to or exceeding that of analog drives, plus information to run your machine more effectively and manage your quality program and your business. Most of this data is simply not available from analog drives.

33 Industry Forum (September/October 1985)

Your May/June issue contains a letter from Edward Ubert of Rockwell International with some serious questions about specifying and measuring tooth thickness.

34 Gear Crack Propagation Investigations (November/December 1997)

A common design goal for gears in helicopter or turboprop power transmission is reduced weight. To help meet this goal, some gear designs use thin rims. Rims that are too thin, however, may lead to bending fatigue problems and cracks. The most common methods of gear design and analysis are based on standards published by the American Gear Manufacturers Association. Included in the standards are rating formulas for gear tooth bending to prevent crack initiation (Ref. 1). These standards can include the effect of rim thickness on tooth bending fatigue (Ref 2.). The standards, however, do not indicate the crack propagation path or the remaining life once a crack has started. Fracture mechanics has developed into a useful discipline for predicting strength and life of cracked structures.

35 Calculating Spur and Helical Gear Capacity with ISO 6336 (November/December 1998)

This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.

36 The Frugal Certification Process (July/August 1994)

Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.

37 QS - 9000 Rules (November/December 1995)

Ready or not, QS-9000 is here. If you are a first-tier supplier to one of the Big Three automotive companies, you've already heard that compliance with this new quality standard is now an entry-level requirement for doing business with Ford, General Motors and Chrysler. If you're a second-or third-tier supplier, you can expect the ripple effect of this new standard to hit your company one way or another.

38 Choosing An ISO 9000 Consultant: Why, When & How (May/June 1994)

On of the key questions confronting any company considering ISO 9000 certification is, how much is this going to cost? The up-front fees are only the beginning. Dissect the ISO 9000 certification procedure with an eye for hidden costs, and two segments of the process will leap out - the cost of consultants and the cost of making in-house improvements for the sake of passing certification. Most of these costs can be controlled by careful selection f the right consultant in the first place.

39 New Guidelines For Wind Turbine Gearboxes (May/June 1998)

The wind turbine industry has been plagued with gearbox failures, which cause repair costs, legal expenses, lost energy production and environmental pollution.

40 ISO 9000: Global Market Salvation Or A Pig In A Poke (March/April 1994)

ISO 9000 is the latest hot topic in marketing and manufacturing circles. Everyone seems to be talking about it, but few seem to understand it completely. depending on whom one talks to, it's either the greatest thing to hit industry since the assembly line, another cash cow for slick consultants, a conspiracy on the part of Europeans to dominate global markets, or the next necessary step to compete in the global economy of the twenty-first century. It may be all of the above.

41 What is ISO 9000 and Why Should I Care (March/April 1994)

What follows is the first of three articles we will be running on ISO 9000 and what it means for the gear industry. This first article will cover what ISO 9000 is, what some of its benefits - and problems - are, and whether your company should be a candidate for this certification process. In our next issue, we will consider the important question of how, when, and if to hire an ISO 9000 consultant. The final article in this series will discuss ways to save money while streamlining the certification process in your company.

42 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

43 Gear Measurement Traceability and Uncertainty (July/August 2000)

Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.

44 Big Gears - High Standards, High Profits (January/February 2009)

Natural resources—minerals, coal, oil, agricultural products, etc.—are the blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.

45 Gears without Standards - But Tons of Fun! (November/December 2012)

If you enjoy working with your hands—without doubt a large segment of Gear Technology’s audience—you must go to robives.com. There you will find one of the most clean-but-serious fun websites on the Internet. It is where you will learn—or re-learn, in some cases—how to create things from paper. Origami, you’re thinking? Nah—mere child’s play.

46 Extending the Benefits of Elemental Gear Inspection (July 2009)

It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.

47 The Total Customer Service Experience (July/August 1997)

What is a quality product? This is not an idle question. In the Darwinian business world in which we operate, knowing the answer to this question is key to our survival. A whole library of standards and benchmarks is available to help us gage how we're doing, but they don't really tell the whole story.

48 IMTS 2000: The World of Manufacturing (September/October 2000)

For eight days every other year, the sponsor of the International Manufacturing Technology Show (IMTS), the Association for Manufacturing Technology (AMT), strives to turn Chicago's McCormick Place into a "productivity marketplace," the largest and most completer display and demonstration of manufacturing technology ever seen in the Americas. If the growth of the show is any indicator, that effort has been very successful indeed. With over 1.4 million square feet of exhibit space taking up all five levels and all three exhibit halls of McCormick Place, each level would rank as one of the nation's 200 largest trade shows. That wasn't always the size or scope of the show. Its inception, while impressive for the time, was humble by today's standards.

49 Design Against Tooth Interior Fatigue Fracture (November/December 2000)

In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.

50 High Speed Gears for Extreme Applications in Industrial and Marine Fields (September/October 2007)

Above all, a gear is not just a mechanical transmission, but is developed to a system fulfilling multiple demands, such as clutch integration, selectable output speeds, and controls of highest electronic standards. This paper shows the basics for high-speed gear design and a selection of numerous applications in detailed design and operational needs.

51 Computerized Hob Inspection & Applications of Inspection Results Part II (July/August 1994)

Flute Index Flute index or spacing is defined as the variation from the desired angle between adjacent or nonadjacent tooth faces measured in a plane of rotation. AGMA defines and provides tolerance for adjacent and nonadjacent flute spacing errors. In addition, DIN and ISO standards provide tolerances for individual flute variation (Fig. 1).

52 Marine Gears: Special Aspects for High Performance (May/June 2006)

A gearbox that absorbs 30 percent of external forces, transmits power from two engines operating at different speeds, and uses gears that meet several design and specification standards at the same time...

53 KISSsoft Introduces New Features with Latest Release (September/October 2010)

Tooth contact under load is an important verification of the real contact conditions of a gear pair and an important add-on to the strength calculation according to standards such as ISO, AGMA or DIN. The contact analysis simulates the meshing of the two flanks over the complete meshing cycle and is therefore able to consider individual modifications on the flank at each meshing position.

54 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

55 Environmentally Safe Fluids for Industrial Cutting, Lubrication, & Cleaning (January/February 1993)

Not long ago, many manufacturing managers thought sensitivity to environmental protection standards meant additional expenses, decreased productivity, and a plethora of headaches and hassles.

56 Gearbox Field Performance From a Revuilder's Perspective (May/June 2001)

The major focus of the American Gear Manufacturers Association standards activity has been the accurate determination of a gearbox's ability to transmit a specified amount of power for a given amount of time. The need for a "level playing field" in the critical arena was one of the reasons the association was formed in the first place. Over the past 85 years, AGMA committees have spent countless hours "discussing" the best ways to calculate the rating of a gear set, often arguing vigorously over factors that varied the resulting answers by fractions of a percentage point. While all that "science" was being debated in test labs and conference rooms all over the country, out industry's customers were conducting their own experiments through the daily operation of gear-driven equipment of all types.

57 M & M Precision, Penn State & NIST Team Up For Gear Metrology Research (July/August 1997)

In 1993, M & M Precision Systems was awarded a three-year, partial grant from the Advanced Technology Program of the Department of Commerce's National Institute of Standards and Technology (NIST). Working with Pennsylvania State University, M&M embarked on a technology development project to advance gear measurement capabilities to levels of accuracy never before achieved.

News Items About standards

1 ISO Releases New Gear Standards (April 5, 2006)
ISO's Technical Committee on Gears, comprised of a multi-national delegation, published several new standards, including: ISO 6336... Read News

2 Norton Abrasives Announces Brand Standards Program (December 3, 2012)
Norton Abrasives, a brand of Saint-Gobain Abrasives, has announced the introduction of a new global Norton brand standards program. The s... Read News

3 New Metal Powder Standards Published (November 2, 2009)
The 2010 edition of Standard Test Methods for Metal Powders & Powder Metallurgy Products has been published by the Metal Powder Indus... Read News

4 2010 Metal Powder Testing and Bearings Standards Released (January 5, 2010)
The 2010 editions of Standard Test Methods for Metal Powders and Powder Metallurgy (PM) Products, and Standard 35, Materials Standards fo... Read News

5 KISSsoft Offers Standards in the Shaft Strength Calculation (February 27, 2014)
For an analytical strength assessement, in the first instance the currently valid standard has to be applied. Therefore, an essential tas... Read News