Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

stress - Search Results

Related Buyers Guide Categories

Stress Relieving

Related Companies

Excel Gear
EXCEL-LENT gear design software can optimize rack and pinion, spur, helical, internal, external, and circular pitch gears in English or metric units. Our gear/gear box design software quickly determines product parameters for various applications saving HUNDREDS of engineering hours.

Inductoheat Inc.
Inductoheat is the largest global manufacturer of induction heating equipment. We are part of the Inductotherm Group of some 40 companies worldwide. We design & build heat treating equipment & power supplies for heating a wide range of parts including gears & sprockets.

Involute Simulation Softwares Inc.
Involute Simulation Softwares specializes in the development of gear calculation and manufacturing software. The main product, HyGEARS™ V 4.0, offers gear designers and manufacturers a standalone software package providing all the design, analysis and manufacturing tools needed from idea to production.

Stresstech Oy
Stresstech provides products and services for process control and quality inspection of gears, camshafts,crankshafts, bearings, valves, etc. Applications for monitoring various manufacturing processes, such as grinding, super finishing, shot peening, heat treatment, case depth after case hardening, etc. Turnkey solutions, instruments and measurement services based on Barkhausen Noise (BN), X-ray Diffraction (XRD) and hole-drilling for studying residual stresses, retained austenite contents, grinding burns, heat treat defects, and hardness changes, welding stresses, etc. Applications for the automotive, machine and aerospace industries.

American Stress Technologies, Inc.
Stresstech Bharat Pvt. Ltd.
Universal Technical Systems, Inc.

Related Power Transmission Companies

Excel Gear, Inc.
Excel Gear engineers have over 50 yrs of experience in machine tool design, gearbox design and manufacturing, wind turbine gearbox, gear manufacturing, analysis and testing of gears, high speed spindles, CNC gimbal heads and attachments. Our qualified engineers can assist in virtually any phase of your project, however complex.

Articles About stress


Articles are sorted by RELEVANCE. Sort by Date.

1 Tooth Root Optimization of Powder Metal Gears - Reducing Stress from Bending and Transient Loads (June/July 2013)

This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.

2 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.

3 Innovative Induction Hardening Process with Pre-heating for Improved Fatigue Performance of Gear Component (July 2014)

Contact fatigue and bending fatigue are two main failure modes of steel gears, while surface pitting and spalling are two common contact fatigue failures -- caused by alternating subsurface shear stresses from the contact load between two gear mates. And when a gear is in service under cyclic load, concentrated bending stresses exist at the root fillet -- the main driver of bending fatigue failures. Induction hardening is becoming an increasingly popular response to these problems, due to its process consistency, reduced energy consumption, clean environment and improved product quality -- but not without issues of its own (irregular residual stresses and bending fatigue). Thus a new approach is proposed here that flexibly controls the magnitude of residual stress in the regions of root fillet and tooth flank by pre-heating prior to induction hardening. Using an external spur gear made of AISI 4340 as an example, this new concept/process is demonstrated using finite element modeling and DANTE commercial software.

4 In-Situ Measurement of Stresses in Carburized Gears via Neutron Diffraction (May 2009)

This paper presents the results of research directed at measuring the total stress in a pair of statically loaded and carburized spur gears. Measurements were made to examine the change in total stress as a function of externally applied load and depth below the surface.

5 Grinding Induced Changes in Residual Stresses of Carburized Gears (March/April 2009)

This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.

6 Controlling Gear Distortion and Residual Stresses During Induction Hardening (March/April 2012)

Induction hardening is widely used in both the automotive and aerospace gear industries to minimize heat treat distortion and obtain favorable compressive residual stresses for improved fatigue performance. The heating process during induction hardening has a significant effect on the quality of the heat-treated parts. However, the quenching process often receives less attention even though it is equally important.

7 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

8 Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration (January/February 2011)

Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more severe near the start-of-active-profile (SAP) of the driving gear.

9 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

10 Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears (July/August 1985)

The manufacturing quality of spiral bevel gears has achieved a very high standard. Nevertheless, the understanding of the real stress conditions and the influences. of certain parameters is not satisfactory.

11 True Bending Stress in Spur Gears (August 2007)

In this paper, an accurate FEM analysis has been done of the “true” stress at tooth root of spur gears in the function of the gear geometry. The obtained results confirm the importance of these differences.

12 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

13 Tooth Root Stresses of Spiral Bevel Gears (May/June 1988)

Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.

14 Design Formulas for Evaluating Contact Stress in Generalized Gear Pairs (May/June 2001)

A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).

15 Asymmetric Teeth: Bending Stress Calculation (March/April 2007)

This article includes a brief summary of the characteristics of involute asymmetric teeth and the problems connected with the related bending tests.

16 Crowning Techniques in Aerospace Actuation Gearing (August 2010)

One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples in aerospace actuation systems.

17 Allowable Contact Stresses in Jacking Gear Units Used in the Offshore Industry (May 2010)

An offshore jack-up drilling rig is a barge upon which a drilling platform is placed. The barge has legs that can be lowered to the sea floor to support the rig. Then the barge can be “jacked up” out of the water, providing a stable work platform from which to drill for oil and gas. Jack-up drilling rigs were first introduced in the late 1950s. Rack-and- pinion-type jack-up units were introduced soon after that and have dominated the industry ever since.

18 Analysis and Testing of Gears with Asymmetric Involute Tooth Form and Optimized Fillet Form for Potential Application in Helicopter Main Drives (June/July 2011)

Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.

19 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

20 Analyzing Gear Tooth Stress as a Function of Tooth Contact Pattern Shape and Position (January/February 1985)

The development of a new gear strength computer program based upon the finite element method, provides a better way to calculate stresses in bevel and hypoid gear teeth. The program incorporates tooth surface geometry and axle deflection data to establish a direct relationship between fillet bending stress, subsurface shear stress, and applied gear torque. Using existing software links to other gear analysis programs allows the gear engineer to evaluate the strength performance of existing and new gear designs as a function of tooth contact pattern shape, position and axle deflection characteristics. This approach provides a better understanding of how gears react under load to subtle changes in the appearance of the no load tooth contact pattern.

21 Tooth-Bending Effects in Plastic Spur Gears (September/October 2007)

This paper describes the investigation of a steel-and-plastic gear transmission and presents a new hypothesis on the governing mechanism in the wear of plastic gears.

22 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

23 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

24 White Etching Areas on Case-Hardened Gears (September/October 1989)

The phenomenon of white layers, which arises from high stress, can be observed under a microscope after the white layers have been treated with a weak nitric acid solution. Their occurrences in zones of high shear stress can provide qualitatively valuable indications of the size and direction of the stress, and they can point out possible starting points for flank damage. An investigation of this phenomenon is described.

25 Structural Analysis of Asymmetrical Teeth: Reduction of Size and Weight (September/October 1997)

The present article contains a preliminary description of studies carried out by the authors with a view toward developing asymmetrical gear teeth. Then a comparison between numerous symmetrical and asymmetrical tooth stress fields under the same modular conditions follows. This leads to the formulation of a rule for similar modules governing variations of stress fields, depending on the pressure angle of the nonactive side. Finally a procedure allowing for calculations for percentage reductions of asymmetrical tooth modules with respect to corresponding symmetrical teeth, maximum ideal stress being equal, is proposed. Then the consequent reductions in size and weight of asymmetrical teeth are assessed.

26 Stress of Planet Gears with Thin Rims (March/April 1994)

This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.

27 Fatigue Aspects of Case Hardened Gears (March/April 1999)

The efficient and reliable transmission of mechanical power continues, as always, to be a central area of concern and study in mechanical engineering. The transmission of power involves the interaction of forces which are transmitted by specially developed components. These components must, in turn, withstand the complex and powerful stresses developed by the forces involved. Gear teeth transmit loads through a complex process of positive sliding, rolling and negative sliding of the contacting surfaces. This contact is responsible for both the development of bending stresses at the root of the gear teeth and the contact stresses a the contacting flanks.

28 Direct Gear Design: Bending Stress Minimization (September/October 2003)

Bending stress evaluation in modern gear design is generally based on the more-than-one-hundred-year-old Lewis equation.

29 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

30 Case Depth and Load Capacity of Case-Carburized Gears (March/April 2002)

Compared to non-heat-treated components, case-carburized gears are characterized by a modified strength profile in the case-hardened layer. The design of case-carburized gears is based on defined allowable stress numbers. These allowable stress numbers are valid only for a defined "optimum" case depth. Adequate heat treatment and optimum case depth guarantee maximum strength of tooth flank and tooth root.

31 Tolerance for Overload Stress (March/April 1985)

The performance of carburized components can be improved simply by changing the alloy content of the steel.

32 CBN Gear Grinding - A Way to Higher Load Capacity (November/December 1993)

Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.

33 Effects of Axle Deflection and Tooth Flank Modification on Hypoid Gear Stress Distribution and Contact Fatigue Life (August 2009)

As is well known in involute gearing, “perfect” involute gears never work perfectly in the real world. Flank modifications are often made to overcome the influences of errors coming from manufacturing and assembly processes as well as deflections of the system. The same discipline applies to hypoid gears.

34 Utilization of Powder Metal and Shot Peening Residual Stress to Maximize Cost and Performance Benefit of Highly Loaded Gearing (November/December 2005)

This article focuses on bending fatigue strength improvements of P/M gearing from recent improvements in P/M technology, combined with shot peening.

35 Computer-Aided Design of the Stress Analysis of an Internal Spur Gear (May/June 1988)

Although there is plenty of information and data on the determination of geometry factors and bending strength of external gear teeth, the computation methods regarding internal gear design are less accessible. most of today's designs adopt the formulas for external gears and incorporate some kind of correction factors for internal gears. However, this design method is only an approximation because of the differences between internal gears and external gears. Indeed, the tooth shape of internal gears is different from that of external gears. One has a concave curve, while the other has a convex curve.

36 Material Selection and Heat Treatment (July/August 1985)

Before the optimum mechanical' properties can be selected, the working stress must be determined, based on recommended allowable stresses.

37 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

38 Predicting the Heat-Treat Response of a Carburized Helical Gear (November/December 2002)

Using the DANTE software, a finite element simulation was developed and executed to study the response of a carburized 5120 steel helical gear to quenching in molten salt. The computer simulation included heat-up, carburization, transfer and immersion in a molten salt bath, quenching, and air cooling. The results of the simulation included carbon distribution of phases, dimensional change, hardness, and residual stress throughout the process. The predicted results were compared against measured results for hardness, dimensions and residual stress. The excellent agreement between predictions and measured values for this carburized 5120 steel gear provides a basis for assessing the various process parameters and their respective importance in the characteristics of not only these heat-treated parts, but of other compositions and shapes.

39 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

40 Wear Protection for Gears (March/April 1996)

Several trends in mechanical engineering are leading to greater surface stress on components and thus to unacceptable wear. These trends include greater stresses due to increased power densities; the need to maintain high precision of components throughout their service life; and the environmental imperative to reduce use of lubricants and additives.

41 Frozen Gears (March/April 1993)

Durability is the most important criterion used to define the quality of a gear. The freezing of metals has been acknowledged for almost thirty years as an effective method for increasing durability, or "wear life," and decreasing residual stress in tool steels. The recent field of deep cryogenics (below -300 degrees F) has brought us high temperature superconductors, the superconducting super collider, cryo-biology, and magnotehydrodynamic drive systems. It has also brought many additional durability benefits to metals.

42 The European Rack Shift Coefficient 'X' for Americans (July/August 1993)

The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.

43 The Fundamentals of Gear Press Quenching (March/April 1994)

Most steel gear applications require appreciable loads to be applied that will result in high bending and compressive stresses. For the material (steel) to meet these performance criteria, the gear must be heat treated. Associated with this thermal processing is distortion. To control the distortion and achieve repeatable dimensional tolerances, the gear will be constrained during the quenching cycle of the heat treatment process. This type of fixture quenching is the function of gear quench pressing equipment.

44 The Barkhausen Noise Inspection Method for Detecting Grinding Damage in Gears (November/December 2002)

When hardened steel components are ground, there is always the possibility of damage to the steel in the form of residual stress or microstructural changes. Methods for detecting this sort of damage have always had one or more drawbacks, such as cost, time, complexity, subjectivity, or the use of hazardous chemicals.

45 Minimal Tooth Number of Flexspline in Harmonic Gear Drive with External Wave Generator (October 2013)

Wave generators are located inside of flexsplines in most harmonic gear drive devices. Because the teeth on the wheel rim of the flexspline are distributed radially, there is a bigger stress concentration on the tooth root of the flexspline meshing with a circular spline, where a fatigue fracture is more likely to occur under the alternating force exerted by the wave generator. The authors' solution to this problem is to place the wave generator outside of the flexspline, which is a scheme named harmonic gear drive (HGD) with external wave generator (EWG).

46 1992 Marks Important Gear Design Milestone: Lewis Bending Strenth Equations Now 100 Years old (November/December 1992)

Columbus' first voyage to the Americas is not the only anniversary worthy of celebration this year. In 1892, on October 15, Wilfred Lewis gave an address to the Engineer's Club of Philadelphia, whose significance, while not as great as that of Columbus' voyage, had important results for the gearing community. In this address, Lewis first publicly outlined his formula for computing bending stress in gear teeth, a formula still in use today.

47 Design Robustness and it Effect on Transmission Error and Other Design Parameters (March/April 2003)

Transmission errors, axial shuttling forces and friction result in bearing forces that serve as the major excitations of gear noise. This paper will use these factors as well as gear stresses and tribological factors to assist in obtaining optimal gear designs.

48 Design Against Tooth Interior Fatigue Fracture (November/December 2000)

In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.

49 Structural Analysis of Teeth With Asymmetrical Profiles (July/August 1997)

This article illustrates a structural analysis of asymmetrical teeth. This study was carried out because of the impossibility of applying traditional calculations to procedures involved in the specific case. In particular, software for the automatic generation of meshes was devised because existing software does not produce results suitable for the new geometrical model required. Having carried out the structural calculations, a comparative study of the stress fields of symmetrical and asymmetrical teeth was carried out. The structural advantages of the latter type of teeth emerged.

50 Metallurgical Aspects to be Considered in Gear and Shaft Design (March/April 1999)

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

51 INFAC Reports on Recent Hobbing and Heat Treating Experiments (July/August 1995)

Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.

52 Design Unit Evaluating New Software from SMT (January/February 2007)

MASTA 4.5.1 models complete transmissions and includes 3-D stress analysis.

53 Tooth Flank Corrections of Wide Face Width Helical Gears that Account for Shaft Deflections (January/February 2005)

This paper discusses the influence of tip relief, root relief, load modification, end relief and their combinations on gear stresses and transmission errors due to shaft deflections.

54 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

55 High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data (March/April 2010)

This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.

56 The Design and Manufacture of Machined Plastic Gears (May/June 1985)

The use of plastic gearing is increasing steadily in new products. This is due in part to the availability of recent design data. Fatigue stress of plastic gears as a function of diametral pitch, pressure angle, pitch line velocity, lubrication and life cycles are described based on test information. Design procedures for plastic gears are presented.

57 Gear Failure Analysis Involving Grinding Burn (January/February 2009)

When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing process when control of the heat generation at the surface is lost.

58 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

59 Longitudinal Tooth Contact Pattern Shift (May 2012)

After a period of operation, high-speed turbo gears may exhibit a change in longitudinal tooth contact pattern, reducing full face width contact and thereby increasing risk of tooth distress due to the decreased loaded area of the teeth. But this can be tricky—the phenomenon may or may not occur. Or, in some units the shift is more severe than others, with documented cases in which shifting occurred after as little as 16,000 hours of operation. In other cases, there is no evidence of any change for units in operation for more than 170,000 hours. This condition exists primarily in helical gears. All recorded observations here have been with case-carburized and ground gear sets. This presentation describes phenomena observed in a limited sampling of the countless high-speed gear units in field operation. While the authors found no existing literature describing this behavior, further investigation suggests a possible cause. Left unchecked and without corrective action, this occurrence may result in tooth breakage.

60 Improved Gear Life Through Controlled Shot Peening (September/October 1986)

The search for greater gear life involves improvement in cost, weight and increased power output. There are many events that affect gear life, and this paper addresses those relating to fatigue, gear tooth pitting, fatigue strength losses due to the heat treating processes and shot peening technique. The capability of shot peening to increase fatigue strength and surface fatigue life eliminate machine marks which cause stress risers, and to aid in lubrication when properly controlled, suggests increased use and acceptance of the process.

61 Tooth Strength Study of Spur Planet Gears (September/October 1986)

In the design of any new gear drive, the performance of previous similar designs is very carefully considered. In the course of evaluating one such new design, the authors were faced with the task of comparing it with two similar existing systems, both of which were operating quite successfully. A problem arose, however, when it was realized that the bending stress levels of the two baselines differed substantially. In order to investigate these differences and realistically compare them to the proposed new design, a three-dimensional finite-element method (FEM) approach was applied to all three gears.

62 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.

63 AGMA, ISO, and BS Gear Standards Part I - Pitting Resistance Ratings (November/December 1990)

A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formulae and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.

64 Optimum Shot Peening Specification - I (November/December 1991)

Shot peening is widely recognized as a prove, cost-effective process to enhance the fatigue characteristics of metal parts and eliminate the problems of stress corrosion cracking. Additional benefits accrue in the areas of forming and texturizing. Though shot peening is widely used today, the means of specifying process parameters and controlling documents for process control are not widely understood. Questions regarding shot size, intensity, and blueprint specification to assure a high quality and repeatable shot peening process are continually asked by many design and materials engineers. This article should answer many of the questions frequently asked by engineering professionals and to further assist companies interested in establishing a general shot peening specification.

65 FZG Rig-Based Testing of Flank Load-Carrying Capacity Internal Gears (June/July 2012)

Micropitting, pitting and wear are typical gear failure modes that can occur on the flanks of slowly operated and highly stressed internal gears. However, the calculation methods for the flank load-carrying capacity have mainly been established on the basis of experimental investigations of external gears. This paper describes the design and functionality of the newly developed test rigs for internal gears and shows basic results of the theoretical studies. It furthermore presents basic examples of experimental test results.

66 Calculation of Optimum Tooth Flank Corrections for Helical Gears (September/October 1988)

The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.

67 Describing Nonstandard Gears - An Alternative to the Rack Shift Coefficient (January/February 1988)

The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.

68 Enhanced Product Performance--Through CBN Grinding (September/October 1988)

Modern manufacturing processes have become an ally of the product designer in producing higher quality, higher performing components in the transportation industry. This is particularly true in grinding systems where the physical properties of CBN abrasives have been applied to improving cycle times, dimensional consistency, surface integrity and overall costs. Of these four factors, surface integrity offers the greatest potential for influencing the actual design of highly stressed, hardened steel components.

69 Investigation of the Strength of Gear Teeth (November/December 1992)

To mechanical engineers, the strength of gear teeth is a question of constant recurrence, and although the problem to be solved is quite elementary in character, probably no other question could be raised upon which such a diversity of opinion exists, and in support of which such an array of rules and authorities might be quoted. In 1879, Mr. John H. Cooper, the author of a well-known work on "Belting," made an examination of the subject and found there were then in existence about forty-eight well-established rules for horsepower and working strength, sanctioned by some twenty-four authorities, and differing from each other in extreme causes of 500%. Since then, a number of new rules have been added, but as no rules have been given which take account of the actual tooth forms in common use, and as no attempt has been made to include in any formula the working stress on the material so that the engineer may see at once upon what assumption a given result is based, I trust I may be pardoned for suggesting that a further investigation is necessary or desirable.

News Items About stress

1 American Stress Technologies Introduces New Inspection System (February 15, 2005)
For the gear manufacturer plagued with nightmares about the possibility of grinding damage, GearScan 600 from American Stress Technologie... Read News