synthetic lubricants - Search Results

Articles About synthetic lubricants

Articles are sorted by RELEVANCE. Sort by Date.

1 Worm Gears - Higher Energy Efficiency and Less Strain on Resources (May 2011)

A very direct and effective way of increasing power transmission efficiency is a changeover from mineral-oil-based lubricants to synthetic lubricants.

2 Gear Up for Performance: An Introduction to Synthetic Lubricants for Fractional Horespower Applications (September/October 2000)

Editor's Note: The following article details the advantages of synthetic lubricants in certain applications. However, the user should be aware of certain design issues arising from the extract chemistry of the synthetic. For example, some synthetics may have low solvency for additives. Others may not be compatible with mineral oils or nonmetallic components such as seals and paints. Some synthetics may absorb water and may not have the same corrosion resistance as mineral oils. Finally, the user should consider biodegradability or toxicity before switching to any new lubricant. Many of these concerns are present in petroleum-based lubricants as well, so consult a lubrication specialist before specifying a lubricant.

3 The Effect of Lubricant Traction On Wormgear Efficiency (January/February 1985)

The effect of various lubricant factors on wormgear efficiency has been evaluated using a variety of gear types and conditions. In particular, the significant efficiency improvements afforded by certain types of synthetic lubricants have been investigated to determine the cause of these improvements. This paper describes broad wormgear testing, both in the laboratory and in service, and describes the extent to which efficiency can be affected by changes in the lubricant; the effects of viscosity, viscosity index improvers and, finally, synthetic lubricants are discussed. The work concludes that lubricant tractional properties can play a significant role in determining gear efficiency characteristics.

4 Gear Oil Classification and Selection (May/June 1995)

Today gear drive operations have several options when selecting the proper lubricant for their gearboxes. As in the past, the primary lubricant used for gearbox lubrication is mineral oil. But with the advances in technology, synthetic hydrocarbons (PAOs) and polyglycols show very specific advantages in certain applications. With gear drives becoming more and more precise, it is now also to the benefit of the gear operator to verify that he or she has the proper additive package and viscosity in the lubricant selected. Fig. 1 shoes that a gear oil is a combination of a base oil and specific additives. The base oils can be either mineral oil, a synthetic or even in some cases a combination of the two.

5 Gear Oil Micropitting Evaluation (September/October 2000)

During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.

6 Systematic Investigations on the Influence of Viscosity Index Improvers on EHL Film Thickness (November/December 2001)

Mineral-oil-base lubricants show a significant decrease of kinematic viscosity with rising temperature, as exemplified in Figure 1 by lubricants for vehicle gears. An important attribute of lubricants is their viscosity index (VI), according to DIN/ISO 2909 (Ref. 4). Viscosity index is a calculated coefficient, which characterizes the change of viscosity of lubricants as a function of temperature. A high viscosity index represents a low variation of viscosity due to temperature and vice versa. A low viscosity-temperature-dependence is required for lubricants that are operated at significantly varying temperature conditions, such as vehicle engine and gear lubricants in summer and winter time. This way, the oils remain flowing and pumpable at low temperatures on the one hand; and on the other hand, sufficiently thick lubricant films can be formed at higher temperatures for a safe separation of the surfaces.

7 Morphology of Micropitting (November/December 2012)

Understanding the morphology of micropitting is critical in determining the root cause of failure. Examples of micropitting in gears and rolling-element bearings are presented to illustrate morphological variations that can occur in practice.

8 Alternative Lubrication Methods for Large Open Gear Drives (September/October 1996)

The type of lubricant and the method of applying it to the tooth flanks of large open gears is very important from the point of view of lubrication technology and maintenance. When selecting the type of lubricant and the application method, it is important to check whether it is possible to feed the required lubricant quantity to the load-carrying tooth flanks, This is necessary to avoid deficient lubrication, damage to the gear and operational malfunctions. It is important to determine the type of lubricant, which may be fluid or grease-like. The consistency of the lubricant will have a direct impact on the ability of the lubrication system to feed adequately the lubricant to the gear. The interactions between the common types of lubricant and the lubrication application methods for open gear drives are shown in Fig. 1.

9 Purchasing Gear Lubricants - Be Careful When Playing the Numbers Game (October 2013)

When it comes to purchasing gear lubricants, many people on both the sales and purchasing side decide to play the numbers game. The person with the most numbers, or the biggest numbers, or the lowest numbers, must have the best product - right? Wrong; gear oil selection is not a game, and numbers alone cannot determine the right product for an application.

10 On the Cutting Edge (January/February 2015)

Sentences that start off with some variance of “I don’t want to brag, but…” are generally a good indicator that it’s precisely what the speaker intends to do and typically end with bold proclamations that are immediately and eminently quotable — the kind of quotes perfect for beginning a feature story with an eye-catching artistic flourish.

11 Lubricants and Lubrication of Plastic Gears (September/October 1993)

Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.

12 Vegetable-Based Oil as a Gear Lubricant (July/August 2003)

Universal tractor transmission oil (UTTO) is multifunctional tractor oil formulated for use in transmissions, final drives, differentials, wet brakes, and hydraulic systems of farm tractors employing a common oil reservoir. In the present work, the gear protection properties of two formulated vegetable-based UTTO oils, one synthetic ester-based UTTO oil, one synthetic ester gear oil, and one mineral based UTTO oil are investigated.

13 Service Behavior of PVD-Coated Gearing Lubricated with Biodegradable Synthetic Ester Oils (January/February 2004)

The following article is concerned with the analysis of the wear-reducing effect of PVD-coatings in gearings. Standardized test methods are used, which under near-real conditions enable statements to be made about the different forms of damage and wear (micropitting, macropitting, scuffing).

14 The Influence of Additive Chemistry on Micropitting (May/June 2005)

This article discusses the potential effects observed for different antiwear and EP chemistry on the micropitting of cylindrical gears.

15 Wind Turbines: Clean Energy, but Energy Efficient (June/July 2011)

We talked energy efficiency with some major players in the lubricants industry— but with a focus on their products’ impact regarding energy efficiency of gears and gearboxes in wind turbines.

16 Ten Myths About Gear Lubrication (May/June 1995)

Myth No. 1: Oil Is Oil. Using the wrong oil is a common cause of gear failure. Gears require lubricants blended specifically for the application. For example, slow-speed spur gears, high-speed helical gears, hypoid gears and worm gears all require different lubricants. Application parameters, such as operating speeds, transmitted loads, temperature extremes and contamination risks, must be considered when choosing an oil. Using the right oil can improve efficiency and extend gear life.

17 Environmentally Safe Fluids for Industrial Cutting, Lubrication, & Cleaning (January/February 1993)

Not long ago, many manufacturing managers thought sensitivity to environmental protection standards meant additional expenses, decreased productivity, and a plethora of headaches and hassles.

18 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.