theory - Search Results

Articles About theory

Articles are sorted by RELEVANCE. Sort by Date.

1 Got Lean, Six Sigma - Here's Another Theory (March/April 2009)

Most readers are at least familiar with continuous improvement programs such as lean and six sigma. Perhaps your shop or company is well along in the implementation of one or the other—if not both. But what about theory of constraints (TOC), introduced in Dr. Eliyahu Goldratt’s 1984 book, The Goal? Despite its rather negative-sounding name, this continuous improvement process has much to offer manufacturers of all stripes. And when combined with lean and six sigma, the results can be dramatic. Dr. Lisa Lang, a TOC consultant and speaker, explains why and how in the following Q&A session with Gear Technology.

2 Development of Gear Technology and Theory of Gearing (July/August 1999)

I must admit that after thumbing through the pages of this relatively compact volume (113 pages, 8.5 x 11 format), I read its three chapters(theory of gearing, geometry and technology, and biographical history) from rear to front. It will become obvious later in this discussion why I encourage most gear engineers to adopt this same reading sequence!

3 The Basics of Gear Theory (June 2015)

Beginning with our June Issue, Gear Technology is pleased to present a series of full-length chapters excerpted from Dr. Hermann J. Stadtfeld’s latest scholarly — yet practical — contribution to the gear industry — Gleason Bevel Gear Technology. Released in March, 2014 the book boasts 365 figures intended to add graphic support of a better understanding and easier recollection of the covered material.

4 Tribology Aspects in Angular Transmission Systems, Part 1 (August 2010)

"General Explanations on Theoretical Bevel Gear Analysis" is part 1 of an eight-part series from Gleason's Dr. Hermann Stadtfeld.

5 Helical Gears With Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact (July/August 1987)

Circular arc helical gears have been proposed by Wildhaber and Novikov (Wildhaber-Novikov gears). These types of gears became very popular in the sixties, and many authors in Russia, Germany, Japan and the People's Republic of China made valuable contributions to this area. The history of their researches can be the subject of a special investigation, and the authors understand that their references cover only a very small part of the bibliography on this topic.

6 The Basics of Gear Theory, Part 2 (July 2015)

The first part of this publication series covered the general basics of involute gearing and applied the generating principle of cylindrical gears analogous to angular gear axis arrangements the kinematic coupling conditions between the two mating members have been postulated in three rules. Entering the world of bevel gears also required to dwell somewhat on the definition of conjugacy. The second part is devoted to the different generating gears and the chain of kinematic relationships between the gear - gear generator - pinion generator and pinion.

7 Development of Usable Bevel Gearset with Length and Profile Crowning (November/December 2015)

In the previous sections, the development of conjugate bevel gearsets via hand calculations was demonstrated. The goal of this exercise was to encourage the reader to gain a basic understanding of the theory of bevel gears. This knowledge will help gear engineers to better judge bevel gear design and their manufacturing methods. In order to make the basis of this learning experience even more realistic, this chapter will convert a conjugate bevel gearset into a gearset that is suitable in a real-world application. Length and profile crowning will be applied to the conjugate flank surfaces. Just as in the previous chapter, all computations are demonstrated as manual hand calculations. This also shows that bevel gear theory is not as complicated as commonly assumed.

8 Inspiring the World Beyond the Theory of Gearing (June 2014)

Celebrating Dr. Faydor Litvin: Remarkable Scientist, Dedicated Mentor, Continuing Inspiration

9 Parallel Axis Gear Grinding: Theory & Application (November/December 2000)

The goal of gear drive design is to transit power and motion with constant angular velocity. Current trends in gear drive design require greater load carrying capacity and increased service life in smaller, quieter, more efficient gearboxes. Generally, these goals are met by specifying more accurate gears. This, combined with the availability of user-friendly CNC gear grinding equipment, has increased the use of ground gears.

10 The Elementary Theory for the Synthesis of Constant Direction Pointing Chariots (or Rotation Neutralizers) (November/December 1988)

The south-pointing chariot exhibited at the Smithsonian Institution, Washington, D.C., (circa 2600 BC)is shown in Fig. 1. Although the mechanism is ancient, it is by no means either primitive or simplistic. The pin-tooth gears drive a complex system, wherein the monk on the top of the chariot continues to point in a preset direction, no matter what direction the vehicle in moved, without a slip of the wheels.(1)

11 Elastohydrodynamic Lubrication (EHL): A Review (July 2015)

This review of elastohydrodynamic lubrication (EHL) was derived from many excellent sources (Refs. 1–5). The review of Blok’s flash temperature theory was derived from his publications (Refs. 6–9). An excellent general reference on all aspects of tribology is the Encyclopedia of Tribology (Ref. 10).

12 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part II (March/April 2014)

Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

13 Practical Approach to Determining Effective Case Depth of Gas Carburizing (March/April 2016)

Effective case depth is an important factor and goal in gas carburizing, involving complicated procedures in the furnace and requiring precise control of many thermal parameters. Based upon diffusion theory and years of carburizing experience, this paper calculates the effective case depth governed by carburizing temperature, time, carbon content of steel, and carbon potential of atmosphere. In light of this analysis, carburizing factors at various temperatures and carbon potentials for steels with different carbon content were calculated to determine the necessary carburizing cycle time. This methodology provides simple (without computer simulation) and practical guidance of optimized gas carburizing and has been applied to plant production. It shows that measured, effective case depth of gear parts covering most of the industrial application range (0.020 inch to over 0.250 inch) was in good agreement with the calculation.

14 Bevel Gear Cutting Methods (June 2016)

THE FINAL CHAPTER This is the last in the series of chapters excerpted from Dr. Hermann J. Stadtfeld’s Gleason Bevel Gear Technology — a book written for specialists in planning, engineering, gear design and manufacturing. The work also addresses the technical information needs of researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems. While all of the above groups are of course of invaluable importance to the gear industry, it is surely the students who hold the key to its future. And with that knowledge it is reassuring to hear from Dr. Stadtfeld of the enthusiastic response he has received from younger readers of these chapter installments.

15 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part I (January/February 2014)

Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

16 Gearbox Speed Reducer Helps Fan Technology for "Greener" Jet Fuel Efficiency (August 2008)

Today’s ever-evolving global economic engine is, in many ways, a wonderful phenomenon; you know—a rising-tide-lifting-all-boats, trickle-down-theory-of-economics dynamic at work.

17 Gear Noise As a Result of Nicks, Burrs and Scale - What Can Be Done (July/August 1996)

There are many different causes of gear noise, all of them theoretically preventable. Unfortunately, the prevention methods can be costly, both in equipment and manpower. If the design of the gear and its application are appropriate, in theory all that is necessary is to have a tight control on the process of producing the finished gear. In reality, there are many variables that can cause a process, no matter how well-controlled, to deteriorate, and thus cause errors, some of which will cause a gear to produce unwanted noise when put to use.

18 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

19 Optimum Shot Peening Specification - II (January/February 1992)

Following is the second part of an article begun in our last issue. The first part covered basic shot peening theory, shot peening controls, and considerations that should go into developing a shot peening specification. Part II covers optional peening methods and the relationship of shot peening specifications to the drawings.

20 Going Lean Is One Thing (June 2007)

Google “lean manufacturing” and you will find a virtually endless font of information regarding formal lean implementation. You’ll see definitions for Japanese words such as kaizen, gemba, muda, mura, kanban, and so on. You will also find other variations or iterations of lean, e.g.: Six Sigma, Lean Sigma, TPS (Toyota Production System), TOC (Theory of Constraints), JIT (Just in Time), and others.

21 The Words and Wisdom of Sheldon Gear Ratio Brown (August 2010)

Bicyclophiles (OK—not a real word, but you get the idea) around the globe may very well know the name, but chances are good that most Gear Technology readers have never heard of Sheldon Brown, AKA—“Gear Ratio,” “Gain Ratio,” “Mouldy Oldie,” “Theory,” “Quixote,” “Fixit” and some the Addendum team probably missed.