Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

time - Search Results

Related Companies

Applied Process
Applied Process is a world leader in austempering technology.

Comtorgage Corporation
Comtorgage Corporation manufactures a variety of hand-held, indicating gages (analog or digital) designed and built to measure various characteristics of machined, molded, forged, and pressed parts. Comtorgages are intended for use on the shop floor, or in the lab, wherever there is a requirement for frequent, and accurate monitoring of specific dimensions, with or without data collection.

ECM USA
ECM Technologies started manufacturing heat-treatment furnaces in 1928. Since that time, ECM personnel have always been completely committed to extending their knowledge in the field of temperature control, high pressures, vacuum and the behavior of materials. This expertise, on an industrial scale, has always been enriched by our close partnership with furnace users, engineers, heat treat engineers and developers. Today, our knowledge base is at the core of all our customers' production lines. It is this concern for caring and listening, combined with our passion for our profession, which has forged ECM Technology and ECM USA’s recognized spirit of innovation.

Hainbuch America
For over 60 years HAINBUCH has been constantly developing new gear clamping solutions focusing on the essentials: the wants and needs of the customer. Set-up times and cost savings, flexibility, productivity, energy efficiency and security – all that you expect from gear clamping solutions. At HAINBUCH America people don´t just work together, we are one big family. Passion, family spirit and the drive for the right innovation at the right time, that´s the mix that makes HAINBUCH America.

Norton | Saint-Gobain
Norton, a brand of Saint-Gobain, is a leading manufacturer of a wide array of abrasive products. For applications ranging from rapid stock removal to precision finishing in all industries, products are offered in BEST, BETTER and GOOD performance/price tiers to meet the needs of all end-user applications.

Presrite Corporation
Presrite manufactures net and near-net forgings for a wide range of industries in countries around the world. Its parts are used in the transmissions, engines and undercarriages of track-type tractors, excavators, wheel loaders and other off-highway vehicles. Presrite institutes an internal program designed to increase performance and quality levels while better controlling costs. Called ?6 SIGMA,? the program involves setting goals, collecting data, and then measuring and analyzing the results.

Sandvik Coromant
Sandvik Coromant is the world's leading producer of tools for turning, milling and drilling. We are represented in 130 countries worldwide. Our head office is in Sandviken, Sweden and we have 8 000 employees. We have customers throughout the metalworking field including the world's major automotive and aerospace industries, the die and mould industry and general engineering industries. In more than 25 well-equipped Productivity Centers customers learn about tooling solutions for increased productivity. We offer various programs to help you and us recognize what's best in your production - and pinpoint areas that need improvements. Our central stocking points in Europe, the United States and the Far East supply our customers directly, within 24 hours. We invest at least twice as much in research and development every year than the average company in our business.

Star Cutter Co.
Headquartered in Farmington Hills, MI, StarCut Sales, Inc. is a wholly owned subsidiary of Star Cutter Company and is a partner in the Star SU LLC enterprise for marketing, sales, and service. Through Star SU and StarCut Sales, Inc.'s international organization Star Cutter Company markets and services its products in North America, South America, Europe and the Far East.

Steelmans Broaches Pvt. Ltd.
Manufacturers and Exporters of Push and Pull style Spline, Serration, Keyway, Surface, Standard Broaches and Broach Sets. We also manufacture Gear Hobs, Gear Cutters, Serration Cutters,Gear Shaper Cutter, Shaving Cutters , Milling Cutters....

Clifford-Jacobs Forging
Drewco Workholding
Fässler Corporation
J. L. Becker Co.
Parker Industries Inc.
Roto-Flo / U.S. Gear Tools
Surplex GmbH
U.S. Gear Tools
Universal Technical Systems
Wenzel America

Related Power Transmission Categories

Timers

Related Power Transmission Companies

C&U Americas, LLC
C&U Bearings are used by some of the world’s leading manufacturers and service providers in a wide variety of applications. Every C&U Bearing is made to exacting standards to deliver the ultimate in the precision, performance, and quality.

Circle Gear & Machine Co.
Quality Custom Gearing Complete Machine Shop ? Reverse Engineering ? Breakdown Service Available

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels

Hangzhou Xingda Machinery Co. Ltd.
ounded in 1984, Hangzhou xingda machinery co.,ltd specialized in the development, manufacture and sales of machanic products. The factory has more than 33000 square meters workshop, and with more than 100 sets of advanced process machines and test equipments. Our main produces SPEED REDUCER E-RV worm speed reducer,passed the ISO 9001, are sold to more than hundreds of cities all over the world,both at home and abroad, in area of food industries, Kitchen word machinery, printing machinery, woodworking machinery, small textile machinery, rubber machinery, small chemical machinery, plastic machinery etc.

Lafert North America
Your best source for metric motors, gearboxes and coolant pumps, by providing quality products with the highest level of service in the industry.

Mach III Clutch Inc.
Mach III Clutch designs and manufactures air and spring set industrial friction clutches and brakes, clutch-brakes, clutch couplings, clutch mechanisms and mechanical torque limiters (slip clutches). All products made in the USA.

New Power Electric (USA) LLC
Whatever your needs in variable speed applications, you can trust our 200/300/400/500 series PMDC motors. Designed and built under the highest quality process for general industrial needs, our products are there to provide reliable performance for a long time.

NSK Corporation
NSK is a global manufacture of bearings and other motion & control products. It operates 51 manufacturing facilities worldwide and 12 global technology centers of excellence that draw from world-leading industry knowledge and manufacturing experience. NSK's dedication to engineering innovation results in state-of-the-art products designed to improve performance and extend service life. NSK's unique Asset Improvement Program helps customers improve productivity and efficiency to significantly reduce operating costs. The company’s industry and process-specific expertise and solutions are applied to identify and solve problems that are limiting productivity. This enables customers to achieve improved performance, enhanced competitiveness and increased profitability.

Precipart
We're building solutions to critical motion control specifications every day. That's because custom speedreducers and gearmotors from 7mm diameter and larger are our specialty. And our profound knowledge of materials and gear manufacturing gives youan edge. From our engineering expertise to prototype and production runs, we work in a wide range of industries, including the aerospace/avionics, scientific instrumentation and medical diagnostic and clinical equipment markets.

Rush Gears Inc.
Manufacturer of Custom and Standard Industrial Gears. Inch and Metric Gears. Steel Gears, Plastic Gears and Stainless Steel Gears. Spur Gears, Helical Gears, Worm & Worm Gears, Gear Rack, Gear Stock & Pinions, Geared Shafts, Splines & Spline Shaft...

Taiwan Precision Gear Corp.
TPG is one professional factory who manufactures all kinds motors, gear box, PMDC motor, drive, clutch, brake, coupling, vibration motor, variable speed drive, disco, right angle worm gear, other power transmission parts.

Yaskawa America, Inc.
The Drives & Motion Division of Yaskawa America, Inc. manufactures industrial automation equipment. Our products include industrial AC variable speed drives; commercial HVAC drives; servo systems and machine controllers; spindle drives and motors; and low-voltage industrial control switches. These products are used in a variety of industries including automotive, building automation, chemical, food/beverage, irrigation, machine tool, material handling, metal forming, oil/gas, packaging, pharmaceutical, power generation, solar, plastics and rubber, textile, and water/wastewater.

Articles About time


1 No Time Like The Present (January/February 1996)

There's nothing like a new year - with the possible exception of birthdays ending in zero - to remind one of the passage of time. Keeping track of time has always been part of the brief of the gear engineer. One of the earliest gear assemblies is the remains of the Antikythera machine, a calendar/calculator dating from the first century B.C. Until the industrial revolution, clock makers and gear designers were usually the same people.

2 Hey Brother, Can You Spare Some Time (March/April 2010)

How you can get involved in a grassroots movement to save American manufacturing--and the American economy.

3 Investment Tax Credits - A Good Idea Whose Time Has Come (March/April 1992)

Of timing is crucial in the successful implementation of good ideas, then now is the time to reinstate a good idea that fell into disfavor in the mid-1980s. Now is the time to include the investment tax credit as part of whatever inevitable tax structure tinkering is going to take place during this election year.

4 Are We Going the Way of the Mayans and Romans (March/April 2010)

A review of "A Nation on Borrowed Time," a book by Joe Arvin and Scott Newton about the decline of America's ability to create wealth through manufacturing, and its effect on the overall economy.

5 Estimating Hobbing Times (July/August 1989)

Hobbing is a continuous gear generation process widely used in the industry for high or low volume production of external cylindrical gears. Depending on the tooth size, gears and splines are hobbed in a single pass or in a two-pass cycle consisting of a roughing cut followed by a finishing cut. State-of-the-art hobbing machines have the capability to vary cutting parameters between first and second cut so that a different formula is used to calculate cycle times for single-cut and double-cut hobbing.

6 Detailed Computer Model of Gearbox Reduces Design Time (March/April 2006)

LMS International helped a Fiat subsidiary develop a new, dynamic vibro-acoustic prediction method to reduce design time and engineering costs through accurate prediction of gear noise in the design phase.

7 Custom Gear Cycle Times Plummet with Help from Reishauer, Siemens (September/October 2009)

Custom Gear and Machine, Inc., of Roscoe, IL, recently purchased a Reishauer RZ400 gear grinder and, on one job, has seen the cycle time drop from 40 minutes to six minutes, according to Tim Rose, vice president of manufacturing, who runs the business with co-owners Dave Patterson and Mike Rasmann.

8 In Search of a Competitive Advantage (March/April 2014)

The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.

9 Into-Mesh Lubrication of Spur Gears - Part 2 (July/August 1989)

In the lubrication and cooling of gear teeth a variety of oil jet lubrication schemes is sometimes used. A method commonly used is a low pressure, low velocity oil jet directed at the ingoing mesh of the gears, as was analyzed in Reference 1. Sometimes an oil jet is directed at the outgoing mesh at low pressures. It was shown in Reference 2 that the out-of-mesh lubrication method provides a minimal impingement depth and low cooling of the gears because of the short fling-off time and fling-off angle.(3) In References 4 and 5 it was shown that a radially directed oil jet near the out-of-mesh position with the right oil pressure was the method that provided the best impingement depth.

10 Carburizing of Big Modulea sn Large Diameter Gears (September/October 2002)

Carburized gears have higher strengths and longer lives compared with induction-hardened or quench-tempered gears. But in big module gears, carburizing heat-treatment becomes time-consuming and expensive and sometimes cannot achieve good hardness due to the big mass-effect. Also, it is not easy to reduce distortion of gears during heat treatment.

11 Computer Aided Design (CAD) of Forging and Extrusion Dies for the Production of Gears by Forming (January/February 1985)

Material losses and long production times are two areas of conventional spur and helical gear manufacturing in which improvements can be made. Metalforming processes have been considered for manufacturing spur and helical gears, but these are costly due to the development times necessary for each new part design. Through a project funded by the U.S. Army Tank - Automotive Command, Battelle's Columbus Division has developed a technique for designing spur and helical gear forging and extrusion dies using computer aided techniques.

12 Manufacturing of Forged and Extruded Gears (July/August 1990)

Traditional methods of manufacturing precision gears usually employ either hobbing or shaper cutting. Both of these processes rely upon generating the conjugate tooth form by moving the work-piece in a precise relation to the tool. Recently, attention has been given to forming gear teeth in a single step. Advantages to such a process include reduced production time, material savings, and improved performance characteristics. Drawbacks include complicated tool designs, non-uniformity of gears produced throughout the life of the tooling, and lengthy development times.

13 Gear Inspection Chart Evaluation; Specifying Unusual Worm Gear Sets (November/December 1991)

Question: When evaluating charts from a gear inspection machine, it is sometimes found that the full length of the profile traces vary, and that sometimes they are less than the length of active profile (above start of active profile-SAP) by up to 20%. This condition could be caused by a concentricity error between tooth grinding and shaping, or by unequal stock removal when grinding. (See Fig. 1.) Is it possible that some of the variation is coming from the inspection machine? How can variation from the inspection machine be reduced?

14 Siemens Plant Management 101 (May 2012)

Once upon a time there was a computer. This computer served as a conduit to waste a great deal of time through social networking and online video games. Still, there was always potential to turn these rather sedentary activities into something more positive and useful to mankind. Siemens may have stumbled upon such a concept.

15 Gear Expo 2009 - The Show of Shows for All Things Gearing (August 2009)

As Gear Expo 2009 approaches (Sept. 15–17), the show finds itself in an “It was the best of times, it was the worst of times” mindset.

16 Influence of Lubrication on Pitting and Micropitting Resistance of Gears (March/April 1990)

Pitting and micropitting resistance of case-carburized gears depends on lubricants and lubrication conditions. Pitting is a form of fatigue damage. On this account a short time test was developed. The test procedure is described. The "pitting test" was developed as a short time test to examine the influence of lubricants on micropitting. Test results showing the influence of case-carburized gears on pitting and micropitting are presented.

17 A Wellspring of Opinion (May/June 2006)

For more than 22 years, I've been dropping rocks down the well of the gear industry's public opinion. Most every issue, I drop another rock. Sometimes I think I hear a faint splash, but most times I just wait.

18 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

19 Notes From the Editor's Desk (July/August 1986)

The last two months have been both a time of difficulty and of growth for Gear Technology. Unexpectedly, I found myself in the hospital having surgery, and consequently out of commission for several weeks. At the same time, two individuals on our staff lost family members, and most of this period saw us getting ready for this preshow IMTS issue while being seriously short-staffed.

20 Looking to The Future (September/October 1997)

Economic times are good right now in America and in the gear industry. We're in the seventh year of an up cycle. The tough shake-outs of the 1980s and early 90s are over. Orders are up. Backlogs are at comfortable levels. We're looking at what promises to be the biggest, most successful trade show in the industry's history coming up in Detroit in October. The most pressing question on the immediate horizon seems to be "How long can the good times go on?"

21 Accelerating Validation Testing (January/February 2012)

Bringing new or improved products to market sooner has long been proven profitable for companies. One way to help shorten the time-to-market is to accelerate validation testing. That is, shorten the test time required to validate a new or improved product.

22 The World--Our Market (May/June 1987)

As the time came to write this editorial, the replies to our survey from the last issue were just starting to pour in. We were gratified by the number of responses we received and by the amount of time many of you spent answering in great detail the text questions on the survey. Because of this unusually large response, it will take us some months to log, digest and respond to all the data. Thank you for this nice "problem."

23 Gear Technology User's Guide to IMTS '96 (July/August 1996)

IMTS: It can be the best of times or the worst of times. The best because nowhere will you find more equipment, products and services for your business than at McCormick Place, Chicago, in September; the worst because finding your way around the show and around the city can be a hassle.

24 The Frugal Certification Process (July/August 1994)

Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.

25 Questions To Keep You Up At Night (November/December 1995)

Sometimes in the pressure to meet deadlines and handle the Crisis of the Day, we lose sight of the forest for the trees. As a partial cure for this syndrome, I recently reviewed the six interviews with gear industry leaders that have appeared in our pages during the last year, trying to get a grasp of a larger picture. It struck me with renewed force how six men, each with a lifetime of experience in this business, see the gear industry forest the same way.

26 The Next Step in Bevel Gear Metrology (January/February 1996)

In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.

27 Industial Evolution (May/June 2002)

The gear industry, like any other, is constantly changing. Companies vie for customers, resources, employees and time. They come, go and shuffle for position. Usually, the changes are small, affecting only a few companies. But sometimes, many changes happen at once, and when those changes are large, it can seem as though an earthquake has struck and transformed the landscape of the industry.

28 Brave New World (March/April 1991)

Observations while traveling through Hungary last November...this is a very ancient country; people have lived and worked here along the Danube River since early times, and change is just another piece of the landscape. Still, the collapse of the old Communist economy is one of the more remarkable phenomena in a land that has seen and lived under different versions of the "new world order" since the first barbarian invasions. The difference is that this time, the people themselves are working the change, and the results are exciting in their variety and effect.

29 Drivetrain Research An Idea Whose Time is Overdue (July/August 1995)

The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.

30 Riding Out The Good Times (March/April 1998)

Happy days are here again, says the old song, and given the current economic numbers, one can scarcely argue. Productivity is up; unemployment is down; inflation is practically nonexistent; the budget deficit is shrinking fast.

31 Marking Time With Wood (March/April 2000)

Clocks with wooden gears? In these days of gears made from plastic, steel and exotic materials; it is a little unusual to hear about a practical application for wooden gears. But that is exactly what David Scholl, the owner of Changing Times, a Harlingen, TX, clockmaker is offering us.

32 Keeping Time Hawaiian Style (September 2012)

Clayton Boyer specializes in kinetic sculpture -- especially wooden gear clocks -- and he'd like to share his plans with you.

33 A United Europe Will Be A Long Time coming (May/June 1991)

Pride. Awe. Relief. Admiration. These were some of the emotions with which I, like most Americans, greeted the end of the Persian Gulf War. I was proud of our country for saying it would do a job and then doing it with a minimum of loss and a maximum of effectiveness; I was awed by the terrifying efficiency of our weapons and relieved that our casualties were so light; and I was filled with admiration at the skill with which one of the most complex logistical military operations of the century was carried out.

34 Tomorrow's Gear Inspection Systems: Arriving Just in Time (June/July 2012)

Gleason's GMS analytical gear inspection systems provide all the right features at Eaton Corp.

35 Gear Expo: Changing with the Times (June/July 2011)

AGMA president Joe T. Franklin Jr. talks about how the AGMA Gear Expo has grown and changed since its beginnings as a table-top show in 1987.

36 Best of Times, Worst of Times (November/December 2011)

An American renaissance in manufacturing is needed—and long overdue.

37 Good Basic Design or Sophisticated Flank Optimizations - Each at the Right Time (January/February 2005)

More strength, less noise. Those are two major demands on gears, including bevel and hypoid gears.

38 Minimum Setup Time, Maximum Machining Capability (November/December 2011)

Hainbuch offers workholding solutions for United Gear.

39 Summertime...and the Statistics Are Easy (June 2010)

With this change of seasons seems to have come a change in mood as well. Manufacturers are optimistic.

40 Reader Dialogue: Functional Measurement of Gears; More Good Gear Books (September/October 1992)

From time to time, the editors of "Shop Floor" receive correspondence from readers relating to particular articles they have written for past issues. As one of the purposes of this column is to provide a forum for the exchange of ideas, we reproduce here two of these letters and their replies. The subject of the first is the functional measurement of gears. (See Gear Technology, Sept/Oct, 1991, p. 17) Robert E. Smith writes the reply.

41 Low Pressure Carburizing of Large Transmission Parts (September/October 2009)

Often, the required hardness qualities of parts manufactured from steel can only be obtained through suitable heat treatment. In transmission manufacturing, the case hardening process is commonly used to produce parts with a hard and wear-resistant surface and an adequate toughness in the core. A tremendous potential for rationalization, which is only partially used, becomes available if the treatment time of the case hardening process is reduced. Low pressure carburizing (LPC) offers a reduction of treatment time in comparison to conventional gas carburizing because of the high carbon mass flow inherent to the process (Ref. 1).

42 Gear Expo: Changing with the Times (September/October 2009)

"One of the reasons AGMA has been successful over our 93-year history is that the association’s agenda, programs and activities reflect the voices of our members," says Joe T. Franklin, Jr., AGMA President.

43 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

44 How's Your Lead Time (July 2007)

The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.

45 Money Business: Exporting - Part III (July/August 1993)

The object of any business transaction, be it foreign or domestic, is making a profit. That's why you go through all the effort of making and selling your product in the first place. Getting paid in a timely manner is crucial to making profit, but when your customer is in another country, this "timely and convenient" payment can become complicated; hence, your need for a banker with expertise in international markets.

46 Shorter Cycle Times for Carburizing: Dana Develops Atmosphere, Microwave-Based Process (March/April 2006)

Dana Corp. is developing a process that carburizes a straight bevel gear to a carbon content of 0.8% in 60 fewer minutes than atmosphere carburizing did with an identical straight bevel.

47 Gears On Film (November/December 1996)

In our unceasing attempt to further educate our readers - and find new and creative ways to waste time at work - the Addendum staff has spent many long hours (and many dollars on popcorn) to bring you our latest research on gears in film.

48 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

49 Thermal Effects on CMMs (September/October 1997)

The trend toward moving coordinate measuring machines to the shop floor to become an integral part of the manufacturing operations brings real time process control within the reach of many companies. Putting measuring machines on the shop floor, however, subjects them to harsh environmental conditions. Like any measuring system, CMMs are sensitive to any ambient condition that deviates from the "perfect" conditions of the metrology lab.

50 Hard Coatings on Contaminated Surfaces - A Case Study (January/February 1997)

Physical Vapor Deposited (PVD) coatings such as TiN (Titanium nitride) have been a boon for cutting tool manufacturers. They reduce wear and, therefore, extend tool life, which in turn reduces production costs. But PVD coatings are expensive, and when they fail, they cost both time and money, and they causes of the failure are not always readily apparent.

51 Eddy Current Examination of Gear Systems (May/June 1997)

Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.

52 Improved Ion Bond Recoating for the Gear Manufacturing Industry (January/February 1997)

This article summarizes the development of an improved titanium nitride (TiN) recoating process, which has, when compared to conventional recoat methods, demonstrated tool life increases of up to three times in performance testing of hobs and shaper cutters. This new coating process, called Super TiN, surpasses the performance of standard TiN recoating for machining gear components. Super TiN incorporates stripping, surface preparation, smooth coating techniques and polishing before and after recoating. The combination of these improvements to the recoating process is the key to its performance.

53 Ironclad Gears (July/August 1997)

This issue of Addendum is dedicated to gears that have served their country. There have been many, but among the most significant are surely those at work during the Civil War, when their application changed the nature of naval warfare forever. It's time to recall that role, namely, powering the revolving turret of the U.S.S. Monitor, one of the first "ironclad" vessels.

54 Obtaining Meaningful Surface Roughness Measurements on Gear Teeth (July/August 1997)

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

55 Spreading The Word (March/April 1997)

Long-time readers of these pages will know that I have always felt strongly about the subject of professional education. There's nothing more important for an individual's career development than keeping up with current technology. likewise, there's nothing more important that a company can do for itself and it employees than seeing to it they have the professional education they need. Giving people the educational tools they need to do their jobs is a necessary ingredient for success.

56 The Geometry of Helical Mesh (September/October 1997)

In 1961 I presented a paper, "Calculating Conjugate Helical Forms," at the semi-annual meeting of the American Gear Manufacturers Association (AGMA). Since that time, thousands of hobs, shaper cutters and other meshing parts have been designed on the basis of the equations presented in that paper. This article presents the math of that paper without the formality of its development and goes on to discuss its practical application.

57 Calculating Gears (January/February 1997)

Interesting gear factoids discovered wasting time on the Net while pretending to be working...The first four-function mechanical calculator was built by the mathematician Gottfried Leibniz in 1694. While not commercially available for nearly 200 years, the design was the basis of many such calculators until well into this century.

58 The Sines of the Fathers (November/December 1995)

Your Addendum team has come across a number of Good Ole Boys in its time; now we bring you something of even more interest - a Good Ole Gear Book. Mr. Robert Price, of Automation - Gears - Machinery, a gear consulting firm in Delanson, NY, shared with us a real find.

59 The ELIMS Project (January/February 1995)

Arrow Gear Company of Downers Grove, IL, has implemented a computer system that fully integrates exchange between all of its computer applications. The ELIMS (Electronic Linkage of Information Management Systems) project has increased manufacturing productivity and reduced lead times.

60 The Paperless Factory (January/February 1995)

You're already a veteran of the computer revolution. Only you and your controller know how much money you've spent and only your spouse knows how many sleepless nights you've had in the last ten years trying to carve out a place in the brave new world of computerized gear manufacturing. PC's, CNCs, CAD, CAM, DNC, SPC, CMM: You've got a whole bowl of alphabet soup out there on the shop floor. Overall these machines have lived up to their promises. Production time is down, quality is up. You have fewer scrapped parts and better, more efficient machine usage.

61 The Jewels In the (Gear) Crown (January/February 1998)

Over the years the Addendum Staff has brought you odd, little known and sometimes useless facts about almost every conceivable topic concerning gears. This month, as part of our never-ending campaign to upgrade the tone of the industry, we are venturing into the world of high fashion. Lose those pocket protectors, gear fans. Welcome to the land of gear haute couture. Appearing now, in select magazines, are ads that rival those of Bulgari, Cartier and Tiffany. These gear "gems" come courtesy of Winzeler Gear, Chicago, IL.

62 Quality Gear Inspection - Part I (September/October 1994)

Quality gear inspection means doing the "right" inspections "right." A lot of time and money can be spent doing the wrong types of inspections related to function and doing them incorrectly. As we will discover later, such things as runout can creep into the manufacturing and inspection process and completely ruin any piece of data that is taken. this is one of the most important problems to control for quality inspection.

63 Gear Technology: The Next Ten Years (September/October 1994)

A little more than ten years ago this month, the first Gear Technology came off the presses. It was a fledgling effort in every respect. The gear industry had never a magazine of its very own before. Those of us involved in its production were like first-time parents; we were proud and excited, but unsure of what we'd let ourselves in for. None of us knew if this baby could really fly.

64 New Innovations in Hobbing - Part I (September/October 1994)

Prior to the introduction of titanium nitride to the cutting tool industry in the early 1980s, there was very little progress in the general application of hobbing in the gear cutting industry. The productivity gains realized with this new type of coating initiated a very active time of advancement in the gear manufacturing process.

65 Delivering The Goods (May/June 1993)

One of the key questions to be answered when exporting is how you are going to get your product to your customer. All the time, effort, and money you've spent to make a sale in the first place can be wasted if the shipment is late, damaged, or lost, or if delivery becomes an expensive bureaucratic nightmare for either you or the buyer.

66 The Second Edition... (March/April 1995)

Gearing for Munchkins Gene Kasten, president of Repair Parts, Inc., of Rockford, IL, is the proud owner of a miniature Barber-Colman hobber, the only one of its kind in the world. The machine, a replica of the old B-C "A" machine, was built between 1933 and 1941 by W. W. Dickover, who devoted 2, 640 hours of his spare time to the project.

67 Finding Tomorrow's Leaders Today (March/April 1995)

The passage last year of both NAFTA and GATT has gone a long way toward leveling the playing field for American manufacturers and other hoping to compete in the global economy. Add to this news the fact that the domestic economy keeps growing, and it seems as though good times are ahead for the gear industry.

68 Gear Expo '93 - A Wise Investment (July/August 1993)

Gear Expo '93 - another trade show, another plea to send people and/or equipment out of town, away from the office or plant. Another bid to spend time, money, and effort. Oh, please! Hasn't anybody heard that these are the "lean and mean" '90s?

69 The Goof-Off Guide to Indy (November/December 1995)

Trade shows can be exhausting. You work hard all day, meeting people, wheeling and dealing, walking the aisles. After a long day of working the show, sometimes you just need to relax for awhile. With Gear Expo '95 fast approaching. Gear Technology has gone ahead and done some of the legwork for you. We've come up with some placed to go and things to do that have absolutely nothing to do with gears.

70 Heat Treating Challenges for the Future (March/April 1996)

The heat treating of gears presents a difficult challenge to both the heat treater and the gear manufacturer. The number and variety of variables involved in the manufacturing process itself and the subsequent heat treating cycle create a complex matrix of factors which need to be controlled in order to produce a quality product. A heat treater specializing in gears or a gear manufacturer doing his own heat treating must have a clear understanding of these issues in order to deliver a quality product and make a profit at the same time. The situation also presents a number of areas that could benefit greatly from continued research and development.

71 Transitions (July/August 1995)

Beginning with this issue, one of the last bits of the "old" Gear Technology is gone. From now on we'll be running the new picture of me you see on this page. It was time, my art and editorial staff explained to me, to move ahead with the rest of the updated art and editorial in the magazine. (I emphatically deny that the real motivation for the new picture was putting a stop to the ever-increasing number of jabs from certain friends about my "Dorian Gray" look.)

72 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

73 A Hopeful New Year (January/February 1993)

It always strikes me as something of an irony that the brightest holidays of the year fall in the deepest part of the darkest season. They come when the days are the shortest, the clouds the thickest, the weather (at least in Chicago), the worst. And yet it is at precisely this time when we celebrate the happier human emotions of family, love, and charity and somewhat arbitrarily declare a "new" year.

74 How to Carburize a Finished Gear (March/April 1995)

Precise heat treatment plays an essential role in the production of quality carburized gears. Seemingly minor changes in the heat treating process can have significant effects on the quality, expense and production time of a gear, as we will demonstrate using a case study from one of our customer's gears.

75 Cutting Tools Now (May/June 1996)

The cutting tool is basic to gear manufacturing. Whether it's a hob, broach, shaper cutter or EDM wire, not much gets done without it. And the mission of the tool remains the same as always; removing material as quickly, accurately and cost-effectively as possible. Progress in the field tends to be evolutionary, coming gradually over time, but recently, a confluence of emerging technologies and new customer demands has caused significant changes in the machines, the materials and the coatings that make cutting tools.

76 Out of the Cave: Returning the Personal Touch to Business (March/April 2001)

Ever since the first cavemen bartered clamshells and spears, business has been about people interacting. In simpler times, commerce was conducted according to the look in someone's eye or the feel of his handshake. Today we have computers, fax machines, modems, e-mail and cell phones - all powerful tools that have increased our productivity. Those devices have shrunk our world, but, in some ways, they've also distanced us from each other by reducing personal interaction. In the name of efficiency, profitability and progress, we've found ways to place orders, sell products and exchange information without ever coming into contact with another human being.

77 Job Shop Lean (January/February 2013)

This is the first article in an eight-part "reality" series on implementing continuous improvement at Hoerbiger Corporation. Throughout 2013, Dr. Shahrukh Irani will report on his progress applying the job shop lean strategies he developed during his time at Ohio State University.

78 Gear Expo - Mecca Meccanica (August 2013)

It's an ideal time for a pilgrimage to AGMA’s Fall Technical Meeting and Gear Expo, which take place in Indianapolis.

79 Wanted, Custom-Made Machine Tools (August 2013)

The machine tool industry is as competitive as ever. New machine technologies, materials, coatings and software upgrades are changing the way gears are being manufactured. Companies like Gleason, Liebherr, Kapp/Niles and DMG/Mori Seiki spend plenty of time and resources on R&D to develop the best products for the gear market. More importantly, these companies engage with (and listen to) customer requests.

80 Gear Expo 2013 - An Oscar-Worthy Indy Production (August 2013)

We are well into an odd-number year, so it must be just about time for another Gear Expo. Indeed, the big show -- Gear Expo 2013 -- kicks off in Indianapolis at 9:00 a.m. Tuesday, September 17, wrapping up Thursday the 19th at 4:00 p.m. And whether you are exhibiting or attending, the bottom line is you are going -- a good thing for you, your company and the tightly knit U.S. gear industry.

81 Shades of Gray (July/August 2003)

In America and most parts of the world, people are looking for answers about what's going to happen next in the manufacturing economy. We're all looking for evidence that better times are ahead, or at least that the worst is over. We crave a clear indicator, something that shows us in black and white that the situation is going to get better.

82 The Barkhausen Noise Inspection Method for Detecting Grinding Damage in Gears (November/December 2002)

When hardened steel components are ground, there is always the possibility of damage to the steel in the form of residual stress or microstructural changes. Methods for detecting this sort of damage have always had one or more drawbacks, such as cost, time, complexity, subjectivity, or the use of hazardous chemicals.

83 Increaed Load Capacity of Worm Gears by Optimizing the Worm Wheel Bronze (May/June 2002)

The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.

84 Gear Surface Durability Development to Enhance Transmission Power Density (July/August 2002)

Gear pitting is one of the primary failure modes of automotive transmission gear sets. Over the past years, many alternatives have been intended to improve their gear surface durability. However, due to the nature of new process development, it takes a length of time and joint efforts between the development team and suppliers to investigate and verify each new approach.

85 Direct Gear Design for Spur and Helical Involute Gears (September/October 2002)

Modern gear design is generally based on standard tools. This makes gear design quite simple (almost like selecting fasteners), economical, and available for everyone, reducing tooling expenses and inventory. At the same time, it is well known that universal standard tools provide gears with less than optimum performance and - in some cases - do not allow for finding acceptable gear solutions. Application specifies, including low noise and vibration, high density of power transmission (lighter weight, smaller size) and others, require gears with nonstandard parameters. That's why, for example, aviation gear transmissions use tool profiles with custom proportions, such as pressure angle, addendum, and whole depth. The following considerations make application of nonstandard gears suitable and cost-efficient:

86 An Experimental Investigation of Aerospace-Quality Gears Operating in Loss-of-Lubrication Condition (August 2013)

This work establishes a baseline for aerospace spur gear behavior under oil-off conditions. The collected test results document a different oil-off time, dictated by material used.

87 New Standards for Large Ring Gears for Mills, Kilns (September 2013)

Methods of examining large ring gear teeth to detect surface breaking discontinuities have often been time-consuming and limited in terms of data collected. Methods such as visual and magnetic particle inspection can miss critical discontinuities. However, a new ASTM international standard provides a more effective method for gear examination using eddy current array, a technology that has been widely used but, until now, not standardized.

88 The Past, Present and Future of Gear Manufacturing (June 2014)

The gear industry is full of storytellers. It's a niche market that boasts a remarkable cast of characters that have been sharing their stories with us for 30 years. In that time, the editors and staff of Gear Technology magazine have had the privilege to report the ins and outs of this highly-specialized industry. From technical articles to case studies and features, the main focus of this magazine has been to "provide a forum of discovery and innovation for you, the gear manufacturing industry." Our Publisher, Michael Goldstein, said as much in our inaugural issue of May/June 1984.

89 PPD Wear Protection Treatment for Large Parts Opens New Horizons (March/April 2014)

Environmentally friendly, highly efficient and lasting a product's lifetime. With characteristics like this, Pulsed-Plasma Diffusion (PPD) technology from Oerlikon Balzers has established itself as an industry standard for the treatment of large automotive press tooling. Now the technology specialists are targeting new applications with this advanced process, offering an alternative to traditional hard-chrome processes.

90 Born to Blog (March/April 2014)

Blogging is BIG and getting bigger all the time. There doesn’t exist, for example, a news, industry, or entertainment entity that does not have at least one resident blogger. And now, since January -- we have ours.

91 Goodbye, David (May 2014)

I've lost a long-time and dear friend. Sadly, David Iveson of Westminster Machine Tools Ltd. in the U.K. passed away on April 9.

92 Power Skiving of Cylindrical Gears on Different Machine Platforms (January/February 2014)

It has long been known that the skiving process for machining internal gears is multiple times faster than shaping, and more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.

93 Understanding Oil Analysis: How it Can Improve Reliability of Wind Turbine Gearboxes (November/December 2013)

Historically, wind turbine gearbox failures have plagued the industry. Yet an effective oil analysis program will increase the reliability and availability of your machinery, while minimizing maintenance costs associated with oil change-outs, labor, repairs and downtime. Practical action steps are presented here to improve reliability.

94 How to Inspect a Gearbox (September 2013)

Although a comprehensive on-site gearbox inspection is desirable in many situations, there may be constraints that limit the extent of the inspection such as cost, time, accessibility and qualified personnel. This article describes the equipment and techniques necessary to perform an on-site gearbox inspection.

95 The Art of Versatility - Grinding at Gear Expo and EMO (October 2013)

Whether you spent time at Gear Expo in Indianapolis or EMO in Hannover, there was certainly new technology attracting attention. Machine tools are faster, more efficient and can integrate numerous functions in a single setup. Grinding technology is turning science upside down and inside out with high-speed removal rates and increased throughput.

96 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

97 The Gear Analysis Handbook by James L. Taylor Vibration Consultants Inc. (January/February 2002)

The author has written this book primarily from the viewpoint of analyzing vibrations on heavy industrial and mill gearing that may have been in service for a prolonged time. The purpose is to diagnose problems, especially the source or cause of failure. However, the principles and analysis techniques can be used for all types and sizes of gears, as well as for gear noise analysis.

98 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

99 Timing is Everything (September/October 1999)

Although the cultures and areas of expertise of Solomon and Sun Tzu are worlds apart, the two offer similar opinions on the importance of seizing the moment. Their ancient wisdom may have increasing relevance to modern manufacturers in a global economy, particularly those contemplating whether now is the time to invest in capital equipment.

100 Design for Silence: New Concepts and Techniques for Industrial Gears (September/October 1999)

For a long time, relatively high noise levels have been generally accepted for industrial gear units in the 10-100 kW power range. However, due to changing environmental awareness - both in and around industrial sites - customers expectations have moved drastically towards low noise as a key differentiating factor.

101 Gear Manufacturing Past, Present & Future (January/February 2000)

Roughly 100 years ago, Cornelius J. Brosnan of Springfield, Massachusetts, invented and received the first U.S. patent for a paper clip. At about the same time, his fellow inventors were coming up with such marvels as the zipper, the safety razor and the typewriter.

102 IMTS 2000: The World of Manufacturing (September/October 2000)

For eight days every other year, the sponsor of the International Manufacturing Technology Show (IMTS), the Association for Manufacturing Technology (AMT), strives to turn Chicago's McCormick Place into a "productivity marketplace," the largest and most completer display and demonstration of manufacturing technology ever seen in the Americas. If the growth of the show is any indicator, that effort has been very successful indeed. With over 1.4 million square feet of exhibit space taking up all five levels and all three exhibit halls of McCormick Place, each level would rank as one of the nation's 200 largest trade shows. That wasn't always the size or scope of the show. Its inception, while impressive for the time, was humble by today's standards.

103 Powder Metallurgy Innovations (September/October 1999)

Powder metal. To gear makers today, the phrase conjures images of low power applications in non-critical systems. As powder metal technology advances, as the materials increase in density and strength, such opinions are changing. It is an ongoing, evolutionary process and one that will continue for some time. According to Donald G. White, the executive director of the Metal Powder Industries Federation, in his State-of-the-P/M Industry - 1999 report. "The P/M world is changing rapidly and P/M needs to be recognized as a world-class process - national, continental and even human barriers and prejudices must be eliminated - we must join forces as a world process - unified in approach and goals."

104 Kicking Tires (July/August 1999)

For the first time in probably 15 years, I've attended an auto show. Although I haven't been purposely avoiding them, over the past decade or so, the auto industry hasn't given me a compelling reason to go.

105 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

106 Creative Drive (January/February 1999)

Alexander Deeb Could Have Been A Gear Engineer. "I have always had a fascination with movement and moving parts," Deeb says. "As a boy at Christmas time, I was much more interested in how and why my new toys worked than in what they actually did. That curiosity has never left me."

107 A Brief History of Gears (July/August 1999)

No one is quite sure when gears were invented. It's universally agreed, however, that they've been transmitting motion in one form or another for quite a long time.

108 Old World Expertise (November/December 2000)

Dear Editor, I am writing this in response to some articles appearing in your journal, but I want to take the opportunity, also, to express my thanks for all the good work your publication is doing. I always look forward to your next issue being in my mail slot. I know I will find timely technical articles relevant to our manufacturing situation here at Amarillo Gear Co., as well as thought provoking commentary on events and trends affecting our business. The Publisher's Page is always worth the reading.

109 2001: A (Cyber) Space Odyssey (January/February 2001)

In 1968, Stanley Kubrick released the film 2001: A Space Odyssey, based on the story by Arthur C. Clarke. Back then, 2001 was a long way off. It was the future, a time of unknown marvels, amazing discoveries and technological achievements. Now we're in 2001. But while Clarke's and Kubrick's visions of 2001 took place in outer space, what captures my imagination this year is cyberspace.

110 Detroit Trivia Challenge (September/October 2001)

You've been to Detroit several times for Gear Expo, so you think you know Motown pretty well. Prove it. Gear Technology has a quiz to test your knowledge of the Motor City.

111 Gone Fishin' - Back After Gear Expo (September/October 2001)

It's summertime in the gear industry. Out my window, I see blue skies, green grass and trees swaying in the wind. In the background, I hear crickets chirping.

112 Dry Machining for Gear Shaping (November/December 2001)

Economic production is one of the main concerns of any manufacturing facility. In recent years, cost increases and tougher statutory requirements have increasingly made cutting fluids a problematic manufacturing and cost factor in metalworking. Depending on the cutting fluid, production process and supply unit, cutting-fluid costs may account for up to 16% of workpiece cost. In some cases, they exceed tool cost by many times (Ref. 1). The response by manufacturers is to demand techniques for dry machining (Ref. 2).

113 Systematic Investigations on the Influence of Viscosity Index Improvers on EHL Film Thickness (November/December 2001)

Mineral-oil-base lubricants show a significant decrease of kinematic viscosity with rising temperature, as exemplified in Figure 1 by lubricants for vehicle gears. An important attribute of lubricants is their viscosity index (VI), according to DIN/ISO 2909 (Ref. 4). Viscosity index is a calculated coefficient, which characterizes the change of viscosity of lubricants as a function of temperature. A high viscosity index represents a low variation of viscosity due to temperature and vice versa. A low viscosity-temperature-dependence is required for lubricants that are operated at significantly varying temperature conditions, such as vehicle engine and gear lubricants in summer and winter time. This way, the oils remain flowing and pumpable at low temperatures on the one hand; and on the other hand, sufficiently thick lubricant films can be formed at higher temperatures for a safe separation of the surfaces.

114 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).

115 Gear Expo Trivia Challenge (September/October 2001)

You've attended Gear Expo so many times that you think you're an expert on it. Test your expertise with this quiz.

116 Water Powered Machinery (January/February 2001)

In one of my many visits to northern New York state, which included the St. Lawrence River (Thousand Islands Region) and the Adirondack Mountains, I visited Croghan, a village on the Beaver River, which is fed by the Stillwater Resevoir in the Adirondack Mountains. At the base of a dam within the village, I found the remnants of a water turbine and a bevel gear drive system. Having worked for The Gleason Works for many years, I was intrigued by the remains of the bevel gears, which appeared to have had wooden teeth at one time.

117 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

118 Gearbox Field Performance From a Revuilder's Perspective (May/June 2001)

The major focus of the American Gear Manufacturers Association standards activity has been the accurate determination of a gearbox's ability to transmit a specified amount of power for a given amount of time. The need for a "level playing field" in the critical arena was one of the reasons the association was formed in the first place. Over the past 85 years, AGMA committees have spent countless hours "discussing" the best ways to calculate the rating of a gear set, often arguing vigorously over factors that varied the resulting answers by fractions of a percentage point. While all that "science" was being debated in test labs and conference rooms all over the country, out industry's customers were conducting their own experiments through the daily operation of gear-driven equipment of all types.

119 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

120 Editorial (November/December 1989)

The press release on my desk this morning said, "The (precision metal working) industry cannot attract enough qualified applicants. As many as 1,500 jobs a year (in the Chicago are alone) are going unfilled." So what else is new? That's just hard proof confirming the suspicion many of us have had for some time. Some of the best, most qualified and experienced people in our shops are reaching retirement age, and there's no one around to fill their spots. And, if the situation is bad in the metal working trades in general, it's even more critical in the gearing industry. Being small and highly specialized, gear manufacturing attracts even less attention and finds recruitment harder than the other precision metal trades.

121 Marine Gears: Special Aspects for High Performance (May/June 2006)

A gearbox that absorbs 30 percent of external forces, transmits power from two engines operating at different speeds, and uses gears that meet several design and specification standards at the same time...

122 Products of Padua (May/June 2006)

Some things take time, but a magazine ad more than 600 years in the making?

123 Measuring Pitch Diameter (September/October 2005)

Wait a minute, we don't measure pitch diameter. We're sometimes asked to measure it by customers, though, especially ones with older drawings.

124 Micro-Machined Memories (May 2008)

Dollhouses may be toys for children, but an old-time working miniature machine shop is the ultimate toy for a self-proclaimed hobby machinist like Greg Bierck.

125 Help Wanted: Gear Company Seeks Perfect Machinist (January/February 2007)

Sales are up and it's time to hire some additional gear manufacturing personnel. Let's see--what qualities are wee looking for in the ideal candidates?

126 2007 Holiday Buyers Guide (November/December 2007)

We love gears. We love talking about gears, writing about gears and examining gears. If you’re reading this cover to cover, it’s a safe bet you feel the same way. We also love collecting information for Gear Technology’s holiday buyer's guide. Call us sentimental.

127 Do I Have to Go to Gear Expo (September/October 2007)

Maybe you don't have time. If not, send someone else.

128 The New Freedoms: Bevel Blades (September/October 2007)

Today, because of reduced cost of coatings and quicker turnaround times, the idea of all-around coating on three-face-sharpened blades is again economically viable, allowing manufacturers greater freedoms in cutting blade parameters, including three-face-sharpened and even four-face-sharpened blades.

129 Responding to Market and Customer Needs (November/December 2007)

For many in the gear and gear products business, these may seem like the best of times...

130 Your Two Cents (June 2008)

As publisher of Gear Technology, I spend a lot of time thinking about ways to improve the content of our magazine...now it's your turn.

131 Buy Now (July 2008)

If you're thinking about investing in machine tools, now is the right time...

132 Sherlock Holmes and the Gear-Filled Weapons of Mass Destruction (May 2010)

What’s that sound? The churning of gear teeth meshing with the creak of film reels. A bit of “Holmesian deduction” leads us to the conclusion that it’s time for the next installment of the Addendum’s Gears in Film Series!

133 Free at Last (July 2010)

Publisher Michael Goldstein describes the remarkable accomplishments of Randall Publications LLC over the past year, despite the intense and hectic transformation he and the staff experienced unbelievable strain on their time and concentration.

134 IMTS 2010 Poised for Manufacturing Resurgence (July 2010)

Manufacturing is a hot topic everywhere these days, what with economic stimulus plans targeting the struggling industry worldwide. Many hopes are tied to a manufacturing recovery to bring us further up out of the economic doldrums of 2007–2008. Most indicators show that manufacturing is climbing back, so what better time for the International Manufacturing Technology Show (IMTS) 2010 to witness first hand the next generation’s technology.

135 Building on Your Foundation (May 2010)

When you graduated from school and made your way into the world, you probably thought you’d learned everything you needed to know to be successful. But those of us who’ve been out in the workforce for some time know that you never stop learning.

136 High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data (March/April 2010)

This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.

137 IMTS 2008: The Focus--Global Technology (August 2008)

It’s that even-numbered-year time-of-the-year again. The International Manufacturing Technology Show, IMTS 2008, is right around the corner. This 27th installment of the biennial trade show is focusing on connecting global technology.

138 The Staying Power of Low-Pressure Carburizing (September/October 2008)

Open any heat treating journal today and you’re certain to find multiple references (articles, technical papers and/or advertisements) promoting low-pressure carburizing (LPC). The uninformed might breeze by these references thinking it’s the next flash-in-the-pan, but unlike in the past, this time the process has legs.

139 Global Positioning System: The Early Years (January/February 2010)

Before retiring from St. Louis Gear in 2000, Roy Harmon liked to tinker. Since the customer base at the time was seasonal, Harmon was looking for a project to keep himself busy. The engineer decided to challenge himself by designing a “South Pointing Chariot,” a device he had read about in the book The Evolution of the Gear Art by Darle Dudley.

140 Gear Expo 2007 Show Preview (August 2007)

The organizers of Gear Expo 2007 promise to combine the most popular features of shows past with some innovations for this year’s attendees. By the time the show closes on October 10, the association hopes its targeted 175 exhibitors walk away with new insights leading to profitability and renewed contacts.

141 The Effect of Start-Up Load Conditions on Gearbox Performance and Life Failure Analysis, With Supporting Case Study (June 2009)

If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions, and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.

142 Why Do You Read Gear Technology (September/October 2009)

A year ago, we sent out a small e-mail survey with one simple question: “Why do you read Gear Technology?” At that time, we were extremely gratified, even somewhat overwhelmed, by the enthusiastic and appreciative response of our readers, and I wrote about the survey and the results in my editorial in the September/October 2008 issue. When we sent out the survey this year with the same question, you’d think we would have been prepared for the results. We weren’t. If anything, our readers are even more appreciative than they were a year ago.

143 Calculation of Slow Speed Wear of Lubricated Gears (November/December 1985)

On gear drives running with pitch line velocities below 0.5 m/s so called slow speed wear is often observed. To solve some problems, extensive laboratory test work was started 10 years ago. A total of circ. 300,000 h running time on FZG back-to-back test rigs have been run in this speed range.

144 Editorial (November/December 1985)

Three things have happened in the last few weeks, that lead me to believe the worst is over - not that great times are ahead, but that things will get better.

145 Hypoloid Gear with Small Shaft Angles and Zero-to-Large Offsets (November/December 2009)

Beveloid gears are used to accommodate a small shaft angle. The manufacturing technology used for beveloid gearing is a special setup of cylindrical gear cutting and grinding machines. A new development, the so-called Hypoloid gearing, addresses the desire of gear manufacturers for more freedoms. Hypoloid gear sets can realize shaft angles between zero and 20° and at the same time, allow a second shaft angle (or an offset) in space that provides the freedom to connect two points in space.

146 2008 Holiday Buyer's Guide (November/December 2008)

Just say "No" to gift cards or fruit baskets this time around.

147 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

148 Innovative Concepts for Grinding Wind Power Energy Gears (June 2009)

This article shows the newest developments to reduce overall cycle time in grinding wind power gears, including the use of both profile grinding and threaded wheel grinding.

149 Paying the Tab (June 2009)

The U.S. economy has been out of kilter for some time. But Uncle Sam isn't going to bail you out. You're going to have to do it yourself.

150 Full Speed Ahead (May 2012)

Indexable carbide insert (ICI) cutting tools continue to play a pivotal role in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.

151 Single-Flank Testing of Gears (May/June 2004)

This article was originally published 20 years ago, in Gear Technology’s first issue. It describes a method of evaluating the smoothness, or lack of smoothness, of gear motion. This lack of smoothness of motion, known as “transmission error,” is responsible for excitation of gear noise and problems of gear accuracy and sometimes has a relationship to gear failure.

152 Hard Gear Processing with Skiving Hobs (March/April 1985)

As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.

153 Low Pressure Carburizing with High Pressure Gas Quenching (March/April 2004)

High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications are presented.

154 ASM Bringing the Heat to Gear Expo (July 2009)

Gear making and heat treating pair together like a fine cabernet and filet mignon. Now for the first time, the two industries are embracing this symbiotic relationship by co-locating their industry events this fall in Indianapolis. ASM International’s 2009 Heat Treating Society Conference and Exposition and Gear Technology’s favorite trade show, Gear Expo, are teaming up September 14–17 at the Indiana Convention Center in Indianapolis.

155 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

156 Practical Magic - Metrology Products Keep Pace with Machine Technology (July 2009)

Gear metrology is a revolving door of software packages and system upgrades. It has to be in order to keep up with the productivity and development processes of the machines on the manufacturing floor. Temperature compensation, faster inspection times and improved software packages are just a few of the advancements currently in play as companies prepare for new opportunities in areas like alternative energy, automotive and aerospace/defense.

157 Advantages of Involute Splines as Compared to Straight Sided Splines (May/June 1985)

Since the design of involute splines and their manufacture requires considerable knowledge, not only of the basic properties of the involute profile, but also of various other elements which affect the spline fit and the sometimes complex principles underlying manufacturing and checking equipment, the question is frequently raised as to why the involute profile is given preference in designing splines over the seemingly simpler straight sided tooth profile.

158 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

159 Gear Tooth Scoring Design Considerations for Spur and Helical Gearing (May/June 1985)

High speed gearing, operating with low viscosity lubricants, is prone to a failure mode called scoring. In contrast to the classic failure modes, pitting and breakage, which generally take time to develop, scoring occurs early in the operation of a gear set and can be the limiting factor in the gear's power capability.

160 The Bottom Line on Trade Shows (September/October 1992)

The whole point of a trade show is to get leads that will turn into sales. No matter how attractive your booth was, no matter how smoothly the setup and the show ran, no matter how many visitors you had at your booth, if your presence at a show didn't net you any sales, then your considerable investment of time, money, and effort has been wasted.

161 The Merits of Multifunctional Machining (January/February 2011)

Higher productivity, faster setup times and single unattended operations are just a few of the capabilities gear manufacturers seek in the multifunctional machine tool market.

162 Systematic Approach to Desinging Plastic Spur and Helical Gears (November/December 1989)

Plastic gears are being used increasingly in applications, such as printers, cameras, small household appliances, small power tools, instruments, timers, counters and various other products. Because of the many variables involved, an engineer who designs gear trains on an occasional basis may find the design process to be somewhat overwhelming. This article outlines a systematic design approach for developing injection molded plastic spur and helical gears. The use of a computer program for designing plastic gears is introduced as an invaluable design tool for solving complex gearing equations.

163 Asymmetric Gears: Parameter Selection Approach (June/July 2012)

In many gear transmissions, a tooth load on one flank is significantly higher and is applied for longer periods of time than for the opposite one; an asymmetric tooth shape reflects this functional difference. This paper describes an approach that rationalizes the degree of asymmetry (or asymmetry factor K) selection to meet a variety of operating conditions and requirements for custom gear drives.

164 Accurate and Fast Gear Trigonometry (September/October 1990)

An accurate and fast calculation method is developed to determine the value of a trigonometric function if the value of another trigonometric function is given. Some examples of conversion procedures for well-known functions in gear geometry are presented, with data for accuracy and computing time. For the development of such procedures the complete text of a computer program is included.

165 Editorial (July/August 1989)

Assorted thoughts while in a holding pattern over O'Hare... I recently returned from England where I spent time checking out the overseas markets and attending a machinery auction. Buyers came to this auction from all over - Germany, Italy, Switzerland, India, Australia, America - and the prices were astonishing. Often buyers were paying in pounds sterling the same amount or more than they would have paid in U.S. dollars.

166 Editorial (May/June 1989)

Thousands of miles from here, a political and religious leader has ordered a man killed. The Ayatollah Khomeini is offended by a book Salman Rushdie has written; therefore, he has decided this author must die. So what? Executions are ordered all the time in this world. The man who signed this order doesn't interest me. Neither does the book. It's all happening in another country. It has nothing to do with me.

167 Basic Spur Gear Design (November/December 1988)

Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.

168 Mr. None-of-the-Above Wins Again (November/December 1988)

A few years ago, during a presidential election campaign, I saw an editorial cartoon that depicted a man standing outside a voting booth with a bemused expression on his face. Over the door to the booth was a quotation from Dante: "Abandon hope, all ye who enter here." Unfortunately for all of us, the grim jest is just as timely now. Once again, when we make our choice for president this year, the pick seems to be between Mr. Well-He's-Not-Actually-Awful and Mr. At-Least-He's-Not-The-Other-Guy. A candidate who can arouse truly positive and hopeful feelings in the electorate is once again not on the ballot.

169 Editorial (March/April 1989)

At the time I'm writing this editorial, the new year is barely two weeks old. The air and the papers are still full of those inevitable end-of-the-year estimates of how far we've come in one area or another and how far we have to go. Analyses of the future, both grim and humorous, abound. There are even more of these laundry lists of PROBLEMS TO BE SOLVED IMMEDIATELY than usual, since a new president will be inaugurated in a week or so. Everyone had advice for George Bush on what to do first and how to do it. Some of the advice is sound, and I hope he's listening; however, reading all these position papers can be a depressing exercise.

170 AGMA Responds to Gear Standards Article (January/February 1991)

The authors of last issue's article comparing AGMA, ISO and BS methods for Pitting Resistance Ratings are commended. Trying to compare various methods of rating gears is like hitting a moving target in a thick forest. The use of different symbols, presentations, terminology, and definitions in these standards makes it very difficult. But the greatest problem lies with the authors' use of older versions of these documents. ISO drafts and AGMA standards have evolved at the same time their work was accomplished and edited.

171 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

172 Doing It Right & Faster... The Computer's Impact on Gear Design & Manufacture (May/June 1992)

The availability of technical software has grown rapidly in the last few years because of the proliferation of personal computers. It is rare to find an organization doing technical work that does not have some type of computer. For gear designers and manufacturers, proper use of the computer can mean the difference between meeting the competition or falling behind in today's business world. The right answers the first time are essential if cost-effective design and fabrication are to be realized. The computer is capable of optimizing a design by methods that are too laborious to undertake using hard calculations. As speeds continue to climb and more power per pound is required from gear systems, it no longer is possible to design "on the safe side" by using larger service factors. At high rotational speeds a larger gear set may well have less capacity because of dynamic effects. The gear engineer of today must consider the entire gear box or even the entire rotating system as his or her domain.

173 Effects of Temperature on Gage Repeatability & Reproducibility (May/June 1992)

Temperature Induced Dimensional Changes Temperature causes various materials to change size at different rate, known as their Coefficients of Expansion (COE). The effects of this phenomenon on precision dimensional measurements are continuous and costly to industry. Precautions can be taken to allow parts and gages to temperature stabilize before conducting gage R & R studies, but the fact remains that on the shop floor temperatures vary all the time. The slow pace at which industry has accepted this reality probably has to do with the subtlety of these tiny size variations and our inability to sense gradual, but significant temperature changes.

174 A Flood of Lessons (July/August 1992)

About the time we were midst of planning the editorial content for this issue of Gear Technology, we, like everyone else in the metro area, found ourselves diverted by the Great Chicago Flood. For a week, it seemed to be all we thought about. Then the tunnels dried out, the stores reopened, and we all went back to work.

175 Applying Process Control to Gear Manufacturing (March/April 1992)

A common goal of gear manufacturers is to produce gearing that is competitively priced, that meets all quality requirements with the minimum amount of cost in a timely manner, and that satisfies customers' expectations. In order to optimize this goal, the gear manufacturer must thoroughly understand each manufacturing process specified, the performance capability of that process, and the effect of that particular process as it relates to the quality of the manufactured gear. If the wrong series of processes has been selected or a specific selected process is not capable of producing a quality part, manufacturing costs are greatly increased.

176 The Nina, The Pinta, And The American Gear Industry (January/February 1992)

Next year will be the 500th anniversary of Christopher Columbus' famous "discovery" of America. Poor Columbus has fallen on hard times of late, what with revisionist historians smacking their lips over his more notable failures and reminding us that American natives have a vastly different point of view on this Great American Success Story. But before we relegate the Great Navigator to the scrap heap of trashed-over heros, let's take one last look at some of the positive lessons to be learned from the Columbus experience - ones that could be instructive to our current situation in the American gear industry.

177 Gear Fundamentals Reverse Engineering (July/August 1991)

Whether gear engineers have to replace an old gear which is worn out, find out what a gear's geometry is after heat treatment distortion, or just find out parameters of gears made by a competitor, sometimes they are challenged with a need to determine the geometry of unknown gears. Depending on the degree of accuracy required, a variety of techniques are available for determining the accuracy of an unknown gear. If a high degree of precision is important, a gear inspection device has to be used to verify the results. Frequently, several trial-and-error attempts are made before the results reach the degree of precision required.

178 Full-Load Testing of Large Gearboxes Using Closed-Loop Power Circulation (September/October 1991)

This method of testing large gearboxes or, indeed, any power transmission element, had numerous advantages and offers the possibility of large savings in time, energy, and plant, if the overall situation is conducive to its use. This usually requires that several such units need to be tested, and that they can be conveniently connected to each to each other in such a way as to form a closed-loop drive train. No power sink is required, and the drive input system has only to make up power losses. The level of circulating power is controlled by the torque, which is applied statically during rotation, and the drive speed. Principles, advantage, and limitations are described, together with recent experiences in the only known large-scale usage of this technique in Australia.

179 Come See Us In Detroit (September/October 1991)

October is the time. Detroit is the place. AGMA Gear Expo '91 is the event. Cobo Center in downtown Detroit is where you will want to be in October if you have any interest in gear products, manufacturing, or research.

180 Enhanced Product Performance--Through CBN Grinding (September/October 1988)

Modern manufacturing processes have become an ally of the product designer in producing higher quality, higher performing components in the transportation industry. This is particularly true in grinding systems where the physical properties of CBN abrasives have been applied to improving cycle times, dimensional consistency, surface integrity and overall costs. Of these four factors, surface integrity offers the greatest potential for influencing the actual design of highly stressed, hardened steel components.

181 Crisis and Challenge in American Education (May/June 1988)

"We have met the enemy and he is us," says Pogo, the cartoon character. The enemy is the crisis in our educational system, and "crisis" is the only term that accurately describes the situation. It is every bit as serious, if not more so, than the crisis that followed the Soviet launching of Sputnik in 1957 - and for many of the same reasons. Our failing public education system threatens our position int he global political and business arenas; and this time, it's not just the Soviets or the Japanese who need to be taken seriously as competitors. Every country int he world that graduates better prepared students than we do - and there are a great many of them - has us at a competitive disadvantage.

182 Economics of CNC Gear Gashing vs. Large D.P. Hobbing (August/September 1984)

Gear gashing is a gear machining process, very much like gear milling, utilizing the principle of cutting one or more tooth (or tooth space) at a time. The term "GASHING" today applies to the roughing, or roughing and finishing, of coarse diametral pitch gears and sprockets. Manufacturing these large coarse gears by conventional methods of rough and finish hobbing can lead to very long machining cycles and uneconomical machine utilization.

183 Notes From the Editor's Desk (May/June 1986)

This issue of Gear Technology, The Journal of Gear Manufacturing, marks the end of our second year of publication. As we approach our third year, it is time to review our statement of purpose. Gear Technology's primary goal was and is to be a reference source and a forum for the American Gear industry, and to advance gear technology throughout the world.

184 Mechanical Efficiency of Diffential Gearing (July/August 1986)

Mechanical efficiency is an important index of gearing, especially for epicyclic gearing. Because of its compact size, light weight, the capability of a high speed ratio, and the ability to provide differential action, epicyclic gearing is very versatile, and its use is increasing. However, attention should be paid to efficiency not only to save energy, but sometimes also to make the transmission run smoothly or to avoid a self-locking condition.

185 Guest Editorial (May/June 1984)

At a time when there are many pressures on the Gear Industry and its representative Association, the American Gear Manufacturers Association, it seems particularly appropriate that Gear Technology - The Journal of Gear Manufacturing appears. AGMA is particularly pleased to have the opportunity to write the first editorial for this magazine.

186 Load-Sharing Model for Polymer Cylindrical Gears (November/December 2011)

This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight. Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.

187 Carl Zeiss CMM Guides Andrew Tool with Complex Mars Rover Project (March/April 2011)

At Andrew Tool, CMMs have been an integral part of their manufacturing processes for years, but they had never faced a project with such intricate measurements, tight tolerances, heat treatments and a very short time frame requirement.

188 Gear Expo 2011 - Product Previews (October 2011)

There will be plenty of time to talk shop, learn about the latest educational and research endeavors and network with peers. But the real reason the gear industry comes together every two years is to see all the new products and technology offerings.

189 A Proposed Life Calculation for Micropitting (November/December 2011)

If you make hardened gears and have not seen any micropitting, then you haven’t looked closely enough. Micropitting is one of the modes of failure that has more recently become of concern to gear designers and manufacturers. Micropitting in itself is not necessarily a problem, but it can lead to noise and sometimes other more serious forms of failure. Predicting when this will occur is the challenge facing designers.

190 Long on High Technology -- Short on High Technologists (September/October 1986)

At the present time, technology seems to be moving faster than our ability to educate people in its utilization. this is particularly true of the manufacturing engineering profession.

191 Editorial (September/October 1986)

"It's show time!" Ready or not, on Sept 3, the biennial International Machine Tool Show opens at McCormick Place, Chicago. Planning a show that encompasses displays from over 1000 companies from 29 nations and an associated technical conference presenting more than 200 papers on 50 topics has not been without its problems.

192 Give Your Gears a Break - Select the Right Coupling! (May/June 1987)

How important is the right choice of coupling in determining successful machine design? Consider the following example. A transmission of appropriate size was needed to transfer the speed of the engine driver to that of the driven generator. The transmission was properly selected and sized to endure the rated power requirements indefinitely, but after only a short time in operation, it failed anyway. What happened? The culprit in the case was a coupling. It provided the necessary power and protection against misalignment but it lacked the ability to isolate the gears from the torque peaks of the diesel engine.

193 Good Gears Start With Good Blanks (November/December 1987)

The quality of the finished gear is influenced by the very first machining operations of the blank. Since the gear tooth geometry is generated on a continuously rotating blank in hobbing or shaping, it is important that the timed relationship between the cutter and workpiece is correct. If this relationship is disturbed by eccentricities of the blank to its operating centerline, the generated gear teeth will not be of the correct geometry. During the blanking operations, the gear's centerline and locating surfaces are established and must be maintained as the same through the following operations that generate the gear teeth.

194 The Seeds of Our Future Are Now Being Planted (January/February 1988)

A medieval philosopher once said that if he knew for certain the world was to end tomorrow, he would be sure to take time to plant an apple tree in his garden today. The recent events in the world financial capitals have seemed a bit like prior notice of something cataclysmic, but like the philosopher, we can still find some reasons for hope in the face of an uncertain future. The good news for our industry is that four important efforts on the part of various organizations promise to have long-term positive effects on both the gear and machine tool businesses.

195 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

196 Editorial (March/April 1987)

As Gear Technology moves toward its third anniversary, we feel that we have reached a point in our development where it is time to pause, reflect on our accomplishments and plan for the future.

197 Balance is Critical - Monitoring Essential (November/December 1986)

These are changing times for industry. Trauma and uncertainty are always a part of change, and change is not always for the better. Change is usually forced, most frequently by competition. Our competitive free enterprise system should be able to respond to competition because that's its basis. These are critical years. If we do not respond effectively to change and competition, it could be disasterous.

198 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

199 The Competitive Edge (November/December 1986)

Now that the new tax bill has been passed, the time has come to begin evaluating how it will affect investment strategies in the machine tool business. Your first reaction may be to think that any motivation to invest in capital improvements in your company is gone, because both the investment tax credit and the accelerated depreciation on capital investment have been removed from the tax law. After all, if Uncle Sam is not going to help us out through some short term tax gains, why should we bother? Can we afford to bother?

200 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

201 Going Lean is One Thing. But Getting There? Quite Another (June 2007)

Google “lean manufacturing” and you will find a virtually endless font of information regarding formal lean implementation. You’ll see definitions for Japanese words such as kaizen, gemba, muda, mura, kanban, and so on. You will also find other variations or iterations of lean, e.g.: Six Sigma, Lean Sigma, TPS (Toyota Production System), TOC (Theory of Constraints), JIT (Just in Time), and others.

News Items About time

1 Gleason’s Newest Threaded Wheel Grinder Delivers Faster Floor-to-Floor Times for Cylindrical Gears up to 300 mm (February 13, 2007)
The 300 TWG from Gleason Corp. is designed to deliver fast floor-to-floor times for grinding of cylindrical gears with a diameter up to 3... Read News

2 Bill Bradley Awarded AGMA’s Lifetime Achievement Award (April 3, 2006)
The AGMA Board of Directors awarded Bill Bradley, AGMA’s Vice President for the Technical Division with the Lifetime Achievement Awa... Read News

3 Bevel Gear Cutter Slashes Production Time (March 8, 2010)
The Phoenix 280C Bevel Gear Cutting Machine from Gleason reduces cycle times by up to 35 percent for bevel gears and pinions up to 280 mm... Read News

4 Irving Laskin Receives AGMA Lifetime Achievement Award (December 3, 2008)
Irving Laskin, a consultant in gear technology specializing in fine pitch gearing, received the AGMA Lifetime Achievement Award for his d... Read News

5 Sandvik Offers Reduced Cutting Time with CoroMill 176 (November 8, 2011)
Sandvik Coromant recently introduced a new full profile hob for gear milling, CoroMill 176. This indexable carbide insert hob can reduce ... Read News

6 Walter Grinders’ New Tool Grinder Offers Shorter Cycle Times (April 22, 2006)
Walter Grinders unveiled its Helitronic Vision CNC tool grinder at IMTS. According to the company’s press release, the grinder offer... Read News

7 Former Boston Gear President Receives PTDA Lifetime Achievement Award (April 15, 2006)
Roger A. Pennycook, former president of Boston Gear and former vice president of Textron Fluid & Power Co., was the 17th recepient... Read News

8 Preformed Carbide Blanks and Extrusions Save Time and Money (May 18, 2012)
Whether simply cut-to-length or machined into complex shapes, H.B. Carbide's high quality tungsten carbide, made-to-print preforms an... Read News

9 Holroyd?s Plated CBN on High-Rigidity Edgetek Machines Reduces Process Times with Single Lift and Setup (February 14, 2007)
Holroyd's Edgetek machines are produced with high-power/high-speed spindles that optimize the use of plated CBN wheels at surface spe... Read News

10 ZF’s Right-Angled Gearheads Open Door for Luxury Multimedia Pod (May 24, 2007)
The SWG gearheads from ZF offer a smoother alternative to screwjack-based door control systems used in the latest luxury media experience... Read News

11 Surface Grinder Operates with Maximum Productivity, Minimum Cycle Times (February 4, 2009)
The TechMaster 844, from Jones and Shipman, offers 800 mm x 400 mm grinding capacity with a vertical capacity of 360 mm. The machine is ... Read News

12 Gleason Grinder Cuts Production Times (February 4, 2009)
The Genesis 160TWG threaded wheel grinder from Gleason is capable of hard finish grinding of cylindrical gears with diameters up to 160 m... Read News

13 Gleason Adaptive Honing Solutions Save Cycle Times (February 5, 2013)
Honing is a fast, well-proven process in the gear manufacturing industry. It is used in high-volume production environments where every ... Read News

14 PcTime! Released for PalmOS and Windows Mobile Devices (January 23, 2008)
InfosystemsPro LLC announces the release of PcTime! for PalmOS and Windows Mobile devices. PcTime! makes it easy to calculate production... Read News

15 MHI Grinder Hones Four Times Faster (September 30, 2009)
The ZI20A from Mitsubishi Heavy Industries is an internally toothed ring gear grinding machine capable of high-speed and precision with l... Read News