Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

tonal noise - Search Results

Articles About tonal noise


Articles are sorted by RELEVANCE. Sort by Date.

1 Rattle: Addressing Gear Noise in a Power Take-off (January/February 2012)

At Muncie Power, the objective of noise and vibration testing is to develop effective ways to eliminate power take-off (PTO) gear rattle, with specific emphasis on PTO products. The type of sound of largest concern in this industry is tonal.

2 Automated Acoustic Intensity Measurements and the Effect of Gear Tooth Profile on Noise (March/April 1988)

The NASA Lewis Research Center investigated the effect of tooth profile on the acoustic behavior of spur gears through experimental techniques. The tests were conducted by Cleveland State University (CSU) in NASA Lewis' spur gear testing apparatus. Acoustic intensity (AI) measurements of the apparatus were obtained using a Robotic Acoustic Intensity Measurement System (RAIMS). This system was developed by CSU for NASA to evaluate the usefulness of a highly automated acoustic intensity measurement tool in the reverberant environment of gear transmission test cells.

3 The Uses and Limitations of Transmission Error (July/August 1988)

The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.

4 The Relationship of Measured Gear Noise to Measured Gear Transmission Errors (January/February 1988)

Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

5 Viewpoint (May/June 1987)

Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.

6 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

7 Gear Noise and the Making of Silent Gears (March/April 1990)

Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.

8 Investigation of Gear Rattle Phenomena (September/October 1992)

The acceptance by discerning customers of passenger cars is dependent upon both the actual noise lever and the subjective noise character. The subjective noise character itself can contain, among other features, undesirable noise phenomena which become apparent at certain points in the vehicle operating range. One such critical phenomenon is gear rattle, which is mainly present under low speed, high load conditions. Due to changes in the angular velocity of the crankshaft, gear rattle under driving conditions occurs at the unloaded gears and splines.

9 Tooth Modification and Spur Gear Tooth Strain (September/October 1996)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gear box. Reduction of this noise is a NASA and U.S. Army goal.

10 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

11 Gear Noise As a Result of Nicks, Burrs and Scale - What Can Be Done (July/August 1996)

There are many different causes of gear noise, all of them theoretically preventable. Unfortunately, the prevention methods can be costly, both in equipment and manpower. If the design of the gear and its application are appropriate, in theory all that is necessary is to have a tight control on the process of producing the finished gear. In reality, there are many variables that can cause a process, no matter how well-controlled, to deteriorate, and thus cause errors, some of which will cause a gear to produce unwanted noise when put to use.

12 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

13 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

14 Designing Hardened & Ground Spur Gears to Operate With Minimum Noise (May/June 1994)

When designing hardened and ground spur gears to operate with minimum noise, what are the parameters to be considered? should tip and/or root relief be applied to both wheel and pinion or only to one member? When pinions are enlarged and he wheel reduced, should tip relief be applied? What are the effects on strength, wear and noise? For given ratios with enlarged pinions and reduced wheels, how can the gear set sized be checked or adjusted to ensure that the best combination has been achieved?

15 Gear Noise and the Sideband Phenomenon (January/February 1987)

Gear noise can be a source of intense annoyance. It is often the primary source of annoyance even when it is not the loudest noise component. This is because of the way it is perceived. Gear noise is a collection of pure tones which the human ear can detect even when they are 10dB lower than the overall noise level. Another reason for our sensitivity to transmission noise is that we associate it with impending mechanical failure.

16 Identification of Gear Noise with Single Flank Composite Measurement (May/June 1986)

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

17 Evaluation of a Low-Noise, Formate Spiral Bevel Gear Set (January/February 2008)

Studies to evaluate low-noise Formate spiral bevel gears were performed. Experimental tests were conducted on a helicopter transmission test stand...

18 Investigation of the Noise and Vibration of Planetary Gear Drives (January/February 2006)

With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.

19 Transmission Error and Noise Emission of Spur Gears (March/April 2007)

Transmission error (TE) is recognized as one of the most important causes of gear acoustic emissions...

20 The Effect of Flexible Components on the Durability, Whine, Rattle and Efficiency of an Automotive Transaxle Geartrain System (November/December 2009)

Gear engineers have long recognized the importance of considering system factors when analyzing a single pair of gears in mesh. These factors include important considerations such as load sharing in multi-mesh geartrains and bearing clearances, in addition to the effects of flexible components such as housings, gear blanks, shafts and carriers for planetary geartrains. However, in recent years, transmission systems have become increasingly complex—with higher numbers of gears and components—while the quality requirements and expectations in terms of durability, gear whine, rattle and efficiency have increased accordingly.

21 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

22 Proposal for Tip Relief Modification to Reduce Noise and Sensitivity to Meshing Conditions in Spur Gears (March/April 2006)

In this article, a new tip relief profile modification for spur gears is presented. The topography proposed here is a classical linear profile modification with a parabolic fillet.

23 Detailed Computer Model of Gearbox Reduces Design Time (March/April 2006)

LMS International helped a Fiat subsidiary develop a new, dynamic vibro-acoustic prediction method to reduce design time and engineering costs through accurate prediction of gear noise in the design phase.

24 Benefit of Psychoachoustic Analyzing Methods for Gear Noise Investigation (August 2011)

This article provides an overview of the benefits of using psychoacoustic characteristics for describing gear noise. And with that, human hearing and the most important psychoacoustic values are introduced. Finally, results of noise tests with different gear sets aree presented. The tests are the basis for a correlation analysis between psychoacoustic values and gear characteristics.

25 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

26 Chiming in on Gear Noise: Three Experts Have their Say (August 2011)

It is said that “The squeaky wheel gets the grease.” Ok, but what about gear noise? We talked to three experts with considerable knowledge and experience in this area.

27 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

28 Optimum Gear Tooth Microtopographies (July 2008)

A graphical procedure for selecting optimum combinations of profile and lead modifications.

29 Identification and Correction of Damaging Resonances in Gear Drives (August/September 1984)

As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines finite element techniques with experimental signature and modal analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how premature bearing failures were eliminated by detuning the torsional oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.