Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

transmission error - Search Results

Related Companies

Involute Simulation Softwares Inc.
Involute Simulation Softwares specializes in the development of gear calculation and manufacturing software. The main product, HyGEARS™ V 4.0, offers gear designers and manufacturers a standalone software package providing all the design, analysis and manufacturing tools needed from idea to production.

R.E. Smith & Co.
Over 60 years experience in the gear industry. Over 20 years consulting experience in all types of industries. Over 140 different clients with applications from tiny camera gears to large hydro-electric plant drive gears. We have published numerous articles and technical papers in the area of gear metrology, noise, and transmission error (single flank composite) testing.

Related Power Transmission Companies

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Articles About transmission error


1 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

2 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

3 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

4 Optimizing Gear Geometry for Minimum Transmission Error, Mesh Friction Losses and Scuffing Risk Through Computer- Aided Engineering (August 2010)

Minimizing gear losses caused by churning, windage and mesh friction is important if plant operating costs and environmental impact are to be minimized. This paper concentrates on mesh friction losses and associated scuffing risk. It describes the preliminary results from using a validated, 3-D Finite Element Analysis (FEA) and Tooth Contact Analysis (TCA) program to optimize cylindrical gears for low friction losses without compromising transmission error (TE), noise and power density. Some case studies and generic procedures for minimizing losses are presented. Future development and further validation work is discussed.

5 The Uses and Limitations of Transmission Error (July/August 1988)

The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.

6 The Relationship of Measured Gear Noise to Measured Gear Transmission Errors (January/February 1988)

Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

7 Transmission Error and Noise Emission of Spur Gears (March/April 2007)

Transmission error (TE) is recognized as one of the most important causes of gear acoustic emissions...

8 Effect of Extended Tooth Contact on the Modeling of Spur Gear Transmissions (July/August 1994)

In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears. This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

9 A Further Study on High-Contact-Ratio Spur Gears in Mesh with Double-Scope Tooth Profile Modification (November/December 2008)

This paper will demonstrate that, unlike commonly used low-contact-ratio spur gears, high-contact-ratio spur gears can provide higher power-to-weight ratio, and can also achieve smoother running with lower transmission error (TE) variations.

10 Tooth Flank Corrections of Wide Face Width Helical Gears that Account for Shaft Deflections (January/February 2005)

This paper discusses the influence of tip relief, root relief, load modification, end relief and their combinations on gear stresses and transmission errors due to shaft deflections.

11 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

12 Identification of Gear Noise with Single Flank Composite Measurement (May/June 1986)

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

13 Designing Hardened & Ground Spur Gears to Operate With Minimum Noise (May/June 1994)

When designing hardened and ground spur gears to operate with minimum noise, what are the parameters to be considered? should tip and/or root relief be applied to both wheel and pinion or only to one member? When pinions are enlarged and he wheel reduced, should tip relief be applied? What are the effects on strength, wear and noise? For given ratios with enlarged pinions and reduced wheels, how can the gear set sized be checked or adjusted to ensure that the best combination has been achieved?

14 Viewpoint (May/June 1987)

Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.

15 Gear Noise and the Sideband Phenomenon (January/February 1987)

Gear noise can be a source of intense annoyance. It is often the primary source of annoyance even when it is not the loudest noise component. This is because of the way it is perceived. Gear noise is a collection of pure tones which the human ear can detect even when they are 10dB lower than the overall noise level. Another reason for our sensitivity to transmission noise is that we associate it with impending mechanical failure.

16 Lapping and Superfinishing Effects on Surface Finish of Hypoid Gears and Transmission Errors (September/October 2008)

This presentation is an expansion of a previous study (Ref.1) by the authors on lapping effects on surface finish and transmission errors. It documents the effects of the superfinishing process on hypoid gears, surface finish and transmission errors.

17 Design Robustness and it Effect on Transmission Error and Other Design Parameters (March/April 2003)

Transmission errors, axial shuttling forces and friction result in bearing forces that serve as the major excitations of gear noise. This paper will use these factors as well as gear stresses and tribological factors to assist in obtaining optimal gear designs.

18 Application Examples from "Optimizing Gear Geometry for Minimum Transmission Error, Mesh Friction Losses and Scuffing Risk Through Computer- Aided Engineering" (August 2010)

Examples from gears in wind turbine, automotive and industrial applications.

19 Single-Flank Testing of Gears (May/June 2004)

This article was originally published 20 years ago, in Gear Technology’s first issue. It describes a method of evaluating the smoothness, or lack of smoothness, of gear motion. This lack of smoothness of motion, known as “transmission error,” is responsible for excitation of gear noise and problems of gear accuracy and sometimes has a relationship to gear failure.

20 Crowned Spur Gears: Optimal Geometry and Generation (September/October 1988)

Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)

21 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces—based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

22 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

23 Gear Design Optimization for Low Contact Temperature of a High Speed, Non Lubricated Spur Gear Pair (May 2013)

A gear design optimization approach applied to reduce tooth contact temperature and noise excitation of a high-speed spur gear pair running without lubricant. Optimum gear design search was done using the Run Many Cases software program. Thirty-one of over 480,000 possible gear designs were considered, based on low contact temperature and low transmission error. The best gear design was selected considering its manufacturability.

24 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

25 Characteristics of Master Gears (November/December 2006)

The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.

26 Gear Inspection and Chart Interpretation (May/June 1985)

Much information has been written on gear inspection, analytical. functional. semiautomatic and automatic. In most cases, the charts, (if you are lucky enough to have recording equipment) have been explained.

27 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

28 Industry News (October 2013)

The complete Industry News section from the October 2013 issue of Gear Technology.

29 Calibration of Two-Flank Roll Testers (May 2008)

The presence of significant errors in the two-flank roll test (a work gear rolled in tight mesh against a master gear) is well-known, but generally overlooked.

30 To Err is Human. But Making a Habit of it Will Cost You (June 2008)

Everyone makes mistakes. Nobody's perfect. We've all heard those or similar words, and if you happen to be in charge of your company's quality efforts, you've probably heard them more than most people.

31 Measurement Error Induced by Measuring over Pins Instead of Balls (January/February 1996)

The purpose of this article is to clarify some terms and methods used in measuring the size of gears. There is also an explanation given of the error induced and how to correct for it in certain cases when the measurement is made using pins instead of balls.

32 Gear Noise and the Making of Silent Gears (March/April 1990)

Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.

33 Longitudinal Load Distribution Factor for Straddle- and Overhang-Mounted Spur Gears (July/August 1987)

A pair of spur gears generally has an effective lead error which is caused, not only by manufacturing and assembling errors, but also by the deformations of shafts, bearings and housings due to the transmitted load. The longitudinal load distribution on a contact line of the teeth of the gears is not uniform because of the effective lead error.

34 Going to Gear Expo (September 2013)

Like many of you in the gear industry, we’ve been working extremely hard over the past few months getting ready for Gear Expo 2013, which takes place September 17-19 in Indianapolis.

35 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

36 Standards Development: Enclosed Drives (March/April 2011)

Chairman Todd Praneis of Cotta Transmission describes the activities of AGMA's Enclosed Drives technical committee.

37 Trends in Automobile Transmissions (July/August 2006)

With all the work in transmission development these days, the demand for automobile transmission gears should remain strong for several years, but suppliers will have to be as flexible as possible to keep up with the changes.

38 How to Achieve a Successful Molded Gear Transmission (July/August 2006)

Molded plastic gears have very little in common with machined gears other than the fact that both use the involute for conjugate action.

39 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

40 New Transmissions Drive Automotive Gear Industry (July/August 2006)

News from the major automakers and transmission suppliers.

41 High Power Transmission with Case-hardened Gears and Internal Power Branching (January/February 1985)

In the field of large power transmission gear units for heavy machine industry, the following two development trends have been highly influential: use of case hardened gears and a branching of the power flow through two or more ways.

42 Wind Turbine Market Leads Hansen Transmissions to India (June 2007)

When Belgium-based Hansen Transmissions was under the ownership of Invensys plc in the late 1990s, the parent company was dropping not-so-subtle hints that the industrial gearbox manufacturer was not part of its long-term plans. Yet Hansen’s CEO Ivan Brems never dreamed that, less than a decade later, he would be working for an Indian company.

43 Grinding Gears for Racing Transmissions (September/October 2009)

When you push 850 horsepower and 9,000 rpm through a racing transmission, you better hope it stands up. Transmission cases and gears strewn all over the racetrack do nothing to enhance your standing, nor that of your transmission supplier.

44 Optimism in Wind Abounds (January/February 2009)

Big gears and wind turbines go together like bees and honey, peas and carrots, bread and butter and—well, you get the idea. Wind isn’t just big right now, it’s huge. The wind industry means tremendous things for the energy dependent world we live in and especially big things for gear manufacturers and other beleaguered American industries.

45 Hybrid Economy, NASCAR Performance (March/April 2010)

VMT Technologies designs positively engaged, infinitely variable transmission.

46 Cotta Transmission Installs CMM with Gear Checking Module (July 2010)

Xspect Solutions Provides Wenzel Bridge-Type CMM Equipped with OpenDMIS Software for Basic Gear Measuring Capability with CMM Flexibility.

47 Internet Adventures, Part II powertransmission.com (January/February 1997)

In July of 1996 we introduced the gear community to the Internet in these pages through the Gear Industry Home Page (GIHP). This electronic buyers guide for gear machine tools, tooling, accessories and services has proven to be more popular than we could have envisioned. In our first month, we had over 3,000 hits, and in our third month, we have over 4,500. By our fourth month, we topped the 7,000 mark, and we are on our way to 11,000 hits in November. As our advertisers develop their own home sites in order to offer layers of information about their companies, their products and services, we expect this activity will increase even more.

48 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

49 How to Minimize Power Losses in Transmissions, Axles and Steering Systems (September 2012)

By increasing the number of gears and the transmission-ratio spread, the engine will run with better fuel efficiency and without loss of driving dynamics. Transmission efficiency itself can be improved by: using fuelefficient transmission oil; optimizing the lubrication systems and pumps; improving shifting strategies and optimizing gearings; and optimizing bearings and seals/gaskets.

50 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

51 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

52 The Efficiency Experts (September/October 2010)

Bradley University and Winzeler Gear collaborate on the design and development of an urban light vehicle.

53 Reaching Out (March/April 2011)

Publisher Michael Goldstein describes the success of Gear Technology's new e-mail newsletter programs.

54 Gear Transmission Density Maximization (November/December 2011)

This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density maximization is also considered.

55 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.