transmissions - Search Results

Articles About transmissions

Articles are sorted by RELEVANCE. Sort by Date.

1 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

2 Gear Backlash Analysis of Unloaded Gear Pairs in Transmissions (June 2016)

A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers’ expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths. A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.

3 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.

4 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

5 How to Minimize Power Losses in Transmissions, Axles and Steering Systems (September 2012)

By increasing the number of gears and the transmission-ratio spread, the engine will run with better fuel efficiency and without loss of driving dynamics. Transmission efficiency itself can be improved by: using fuelefficient transmission oil; optimizing the lubrication systems and pumps; improving shifting strategies and optimizing gearings; and optimizing bearings and seals/gaskets.

6 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

7 Grinding Gears for Racing Transmissions (September/October 2009)

When you push 850 horsepower and 9,000 rpm through a racing transmission, you better hope it stands up. Transmission cases and gears strewn all over the racetrack do nothing to enhance your standing, nor that of your transmission supplier.

8 Wind Turbine Market Leads Hansen Transmissions to India (June 2007)

When Belgium-based Hansen Transmissions was under the ownership of Invensys plc in the late 1990s, the parent company was dropping not-so-subtle hints that the industrial gearbox manufacturer was not part of its long-term plans. Yet Hansen’s CEO Ivan Brems never dreamed that, less than a decade later, he would be working for an Indian company.

9 New Transmissions Drive Automotive Gear Industry (July/August 2006)

News from the major automakers and transmission suppliers.

10 Trends in Automobile Transmissions (July/August 2006)

With all the work in transmission development these days, the demand for automobile transmission gears should remain strong for several years, but suppliers will have to be as flexible as possible to keep up with the changes.

11 A Practical Guide for Molding Better Plastic Geared Transmissions (May/June 2000)

Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing. This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.

12 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

13 Optimism in Wind Abounds (January/February 2009)

Big gears and wind turbines go together like bees and honey, peas and carrots, bread and butter and—well, you get the idea. Wind isn’t just big right now, it’s huge. The wind industry means tremendous things for the energy dependent world we live in and especially big things for gear manufacturers and other beleaguered American industries.

14 High-Performance Sintered-Steel Gears for Transmissions and Machinery: A Critical Review (August 2012)

Except for higher-end gear applications found in automotive and aerospace transmissions, for example, high-performance, sintered-steel gears match wrought-steel gears in strength and geometrical quality. The enhanced P/M performance is due largely to advances in powder metallurgy over last two decades, such as selective surface densification, new materials and lubricants for high density and warm-die pressing. This paper is a review of the results of a decade of research and development of high- performance, sintered-steel gear prototypes.

15 Gear Noise Prediction in Automotive Transmissions (August 2015)

Due to increasing requirements regarding the vibrational behavior of automotive transmissions, it is necessary to develop reliable methods for noise evaluation and design optimization. Continuous research led to the development of an elaborate method for gear noise evaluation. The presented methodology enables the gear engineer to optimize the microgeometry with respect to robust manufacturing.

16 Effect of Extended Tooth Contact on the Modeling of Spur Gear Transmissions (July/August 1994)

In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears. This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

17 New Transmissions Make the Gas GREENER (July 2015)

“Highway vehicles release about 1.7 billion tons of greenhouse gases (GHGs) into the atmosphere each year — mostly in the form of carbon dioxide (CO2) — contributing to global climate change. The CO2 emissions of a car are directly proportional to the quantity of fuel consumed by an engine. In 2013, U.S. greenhouse gas emissions from transportation were second only to the electricity sector — an increase of about 16% since 1990.” (EPA.GOV).

18 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

19 Load Distribution in Planetary Gears (May/June 2001)

Two-shaft planetary gear drives are power-branching transmissions, which lead the power from input to output shaft on several parallel ways. A part of the power is transferred loss-free as clutch power. That results in high efficiency and high power density. Those advantages can be used optimally only if an even distribution of load on the individual branches of power is ensured. Static over-constraint, manufacturing deviations and the internal dynamics of those transmission gears obstruct the load balance. With the help of complex simulation programs, it is possible today to predict the dynamic behavior of such gears. The results of those investigations consolidate the approximation equations for the calculation of the load factors...

20 Ferrography: A Noninvasive Method to Inspect Your Gears (July/August 2000)

Would you like to be able to see the condition of the gears in your transmissions without having to open the box and physically examine them? There is a way, and not too many people know about it. It's called Wear Particle Analysis, or ferrography, and it is just starting to get noticed.

21 Effects of Planetary Gear Ratio on Mean Service Life (July/August 1998)

Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.

22 Direct Gear Design for Spur and Helical Involute Gears (September/October 2002)

Modern gear design is generally based on standard tools. This makes gear design quite simple (almost like selecting fasteners), economical, and available for everyone, reducing tooling expenses and inventory. At the same time, it is well known that universal standard tools provide gears with less than optimum performance and - in some cases - do not allow for finding acceptable gear solutions. Application specifies, including low noise and vibration, high density of power transmission (lighter weight, smaller size) and others, require gears with nonstandard parameters. That's why, for example, aviation gear transmissions use tool profiles with custom proportions, such as pressure angle, addendum, and whole depth. The following considerations make application of nonstandard gears suitable and cost-efficient:

23 Design Against Tooth Interior Fatigue Fracture (November/December 2000)

In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.

24 Vegetable-Based Oil as a Gear Lubricant (July/August 2003)

Universal tractor transmission oil (UTTO) is multifunctional tractor oil formulated for use in transmissions, final drives, differentials, wet brakes, and hydraulic systems of farm tractors employing a common oil reservoir. In the present work, the gear protection properties of two formulated vegetable-based UTTO oils, one synthetic ester-based UTTO oil, one synthetic ester gear oil, and one mineral based UTTO oil are investigated.

25 Knowing When Enough Is Enough (November/December 2015)

Detection of impending gear tooth failure is of interest to every entity that utilizes geared transmissions. However, it is of particular significance at the Gear Research Institute (GRI), where sponsored efforts are conducted to establish gear material endurance limits, utilizing gear fatigue tests. Consequently, knowing when a gear is about to fail in each and every test, in a consistent manner, is essential for producing reliable and useful data for the gear industry.

26 Comparison of Surface Durability & Dynamic Performance of Powder Metal & Steel Gears (September/October 1995)

Surface-hardened, sintered powder metal gears are increasingly used in power transmissions to reduce the cost of gear production. One important problem is how to design with surface durability, given the porous nature of sintered gears. Many articles have been written about mechanical characteristics, such as tensile and bending strength, of sintered materials, and it is well-known that the pores existing on and below their surfaces affect their characteristics (Refs. 1-3). Power transmission gears are frequently employed under conditions of high speed and high load, and tooth surfaces are in contact with each other under a sliding-rolling contact condition. Therefore it is necessary to consider not only their mechanical, but also their tribological characteristics when designing sintered gears for surface durability.

27 The Modern Approach to Transmission System Design and Analysis (September/October 2015)

Over the last 15 years, there has been significant growth in the number of transmission types as well as their complexity: manual, conventional automatic, dual clutch, automated manual, continuously variable, split power and pure EV transmissions.

28 Light Weight Assembled Gears - A Green Design Solution (May 2013)

It is widely recognized that the reduction of CO2 requires consistent light-weight design of the entire vehicle. Likewise, the trend towards electric cars requires light-weight design to compensate for the additional weight of battery systems. The need for weight reduction is also present regarding vehicle transmissions. Besides the design of the gearbox housing, rotating masses such as gear wheels and shafts have a significant impact on fuel consumption. The current technology shows little potential of gear weight reduction due to the trade-off between mass optimization and the manufacturing process. Gears are usually forged followed or not by teeth cutting operation.

29 Experimental Characterization of Bending Fatigue Strength in Gear Teeth (January/February 2003)

The effort described in this paper addresses a desire in the gear industry to increase power densities and reduce costs of geared transmissions. To achieve these objectives, new materials and manufacturing processes, utilized in the fabrication of gears, and being evaluated. In this effort, the first priority is to compare the performance of gears fabricated using current materials and processes. However, once that priority is satisfied, it rapidly transforms to requiring accurate design data to utilize these novel materials and processes. This paper describes the effort to address one aspect of this design data requirement.

30 Cutting Hardened Gears (November/December 2002)

The need for improved power transmissions that use gears and gearboxes with smaller overall dimensions and with lower noise generation has left manufacturing engineers searching for different methods of gear processing. This search has led to the requirement of hardened gears.

31 Bending Fatigue, Impact and Pitting Resistance of Ausform-Finished PM Gears (June 2010)

The powder metal (P/M) process is making inroads in automotive transmission applications due to substantially lower costs of P/M-steel components for high-volume production, as compared to wrought or forged steel parts. Although P/M gears are increasingly used in powered hand tools, gear pumps and as accessory components in automotive transmissions, P/M-steel gears are currently in limited use in vehicle transmission applications. The primary objective of this project was to develop high-strength P/M-steel gears with bending fatigue, impact resistance and pitting fatigue performance equivalent to current wrought steel gears.

32 Asymmetric Gears: Parameter Selection Approach (June/July 2012)

In many gear transmissions, a tooth load on one flank is significantly higher and is applied for longer periods of time than for the opposite one; an asymmetric tooth shape reflects this functional difference. This paper describes an approach that rationalizes the degree of asymmetry (or asymmetry factor K) selection to meet a variety of operating conditions and requirements for custom gear drives.

33 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

34 Investigation of the Noise and Vibration of Planetary Gear Drives (January/February 2006)

With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.

35 Design Unit Evaluating New Software from SMT (January/February 2007)

MASTA 4.5.1 models complete transmissions and includes 3-D stress analysis.

36 The Beginner's Guide to Powder Metal Gears (September/October 1995)

Increasingly gear designers and product engineers are capitalizing on the economic advantages of powder metallurgy (P/M) for new and existing gear applications. Powder metal gears are found in automobiles, outdoor power equipment transmissions and office machinery applications as well as power hand tools, appliances and medial components.

37 Involute Splines (September/October 1990)

Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons: 1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions. 2)Power is usually required to be transmitted along a shaft.

38 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

39 Synthesis of Spiral Bevel Gears (March/April 1991)

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.

40 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

41 The Right and Wrong of Modern Hob Sharpening (January/February 1992)

Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.

42 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

43 Hybrid, Alternative Drivetrains Take Center Stage at CTI Symposium (May 2010)

As the automotive industry continues to reinvent itself, new transmission technologies are at the forefront of this effort, and there is a whirlwind of new developments being detailed at the German Car Training Institute’s Automotive Transmissions and Drive Trains Symposium North America.

44 Wind Energy: An Established Industry with Emerging Opportunities (March/April 2006)

"An industrial business with a very important growth potential for the next decade." That's the wind energy as described by Ivan Brems of gear manufacturer Hansen Transmissions International.

News Items About transmissions

1 Bosch and Getrag Collaborate on Hybride Systems with Dual Clutch Transmissions (April 5, 2006)
GETRAG and Bosch signed a cooperative agreement covering the development and marketing of parallel hybrid systems in conjunction with dua... Read News

2 Thornycroft Acquires Newage Transmissions (February 26, 2005)
Thornycraft Ltd., an automotive and off-highway equipment company, has acquired Newage Transmissions Ltd. Effective immediatly, Newage... Read News

3 New Facilities for Hansen Transmissions (December 12, 2003)
Hansen Transmissions has moved to a new assembly and repair center, located in Verona, VA. According to the company?s press release, ... Read News

4 Getrag Group and Getrag Ford Transmissions Combine Under Single Brand (April 6, 2006)
Fourteen individual companies in the Getrag Group and Getrag Ford Transmissions, all specializing in transmission systems, drivetrain com... Read News

5 New CEO at Hansen Transmissions (April 26, 2006)
Ivan Brems has been named CEO of Hansen Transmissions International NV. Since joining the Belgium-based company in 1993, Brems has hel... Read News

6 Chrysler and GETRAG Announce Joint Venture for 700,000 Dual Clutch Transmissions (July 2, 2007)
Chrysler Group’s vice president of powertrain manufacturing Richard Chow-Wah joined Indiana Gov. Mitch Daniels to name Tipton Count... Read News

7 Hansen Transmissions Establishes Gearbox Facility in India (February 12, 2007)
Hansen Transmissions International announced plans to invest 170 million euros for a wind turbine production plant. The facility will sup... Read News

8 Hansen Transmissions Appoints CEO (April 14, 2010)
Normal 0 false false false EN-US X-NONE X-NONE Micr... Read News