vibration - Search Results

Articles About vibration

Articles are sorted by RELEVANCE. Sort by Date.

1 Low Vibration Design on A Helical Gear Pair (January/February 2000)

Helical gear pairs with narrow face width can be theoretically classified into three categories over the contact ration domain whose abscissa is the transverse contact ration and whose ordinate is the overlap contact ratio. There is a direct relation between vibration magnitude and shaft parallelism deviation. To clarify the effect of the tooth deviation types on the vibration behavior of helical gear pairs, performance diagrams on vibration are introduced. the acceleration levels of gear pairs are shown by contour lines on the contact ratio domain. Finally, the performance of gears with bias-in and bias-out modifications is discussed considering the effect of the shaft parallelism deviation with use of the developed simulator on a helical gear unit. It becomes clear that there is an asymmetrical feature on the relation between the vibration magnitude of a gear pair and the direction of each deviation.

2 Investigation of the Noise and Vibration of Planetary Gear Drives (January/February 2006)

With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.

3 Identification and Correction of Damaging Resonances in Gear Drives (August/September 1984)

As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines finite element techniques with experimental signature and modal analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how premature bearing failures were eliminated by detuning the torsional oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.

4 Direct Gear Design for Spur and Helical Involute Gears (September/October 2002)

Modern gear design is generally based on standard tools. This makes gear design quite simple (almost like selecting fasteners), economical, and available for everyone, reducing tooling expenses and inventory. At the same time, it is well known that universal standard tools provide gears with less than optimum performance and - in some cases - do not allow for finding acceptable gear solutions. Application specifies, including low noise and vibration, high density of power transmission (lighter weight, smaller size) and others, require gears with nonstandard parameters. That's why, for example, aviation gear transmissions use tool profiles with custom proportions, such as pressure angle, addendum, and whole depth. The following considerations make application of nonstandard gears suitable and cost-efficient:

5 Comparison of Test Rig and Field Measurement Results on Gearboxes for Wind Turbines (October 2011)

This article describes some of the most important tests for prototypes conducted at Winergy AG during the product development process. It will demonstrate that the measurement results on the test rig for load distribution are in accordance with the turbine measurements.

6 Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage (November/December 2010)

A study was performed to evaluate fault detection effectiveness as applied to gear-tooth pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study.

7 The Gear Analysis Handbook by James L. Taylor Vibration Consultants Inc. (January/February 2002)

The author has written this book primarily from the viewpoint of analyzing vibrations on heavy industrial and mill gearing that may have been in service for a prolonged time. The purpose is to diagnose problems, especially the source or cause of failure. However, the principles and analysis techniques can be used for all types and sizes of gears, as well as for gear noise analysis.

8 Generation of Helical Gears with New Surface Topology by Application of CNC Machines (January/February 1994)

Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

9 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

10 The Design and Testing of a Low Noise Marine Gear (May/June 2000)

This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.

11 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

12 Design of High Contact Ratio Spur Gears Cut With Standard Tools (July/August 2003)

In high precision and heavily loaded spur gears, the effect of gear error is negligible, so the periodic variation of tooth stiffness is the principal cause of noise and vibration. High contact ration spur gears can be used to exclude or reduce the variation of tooth stiffness.

13 NVH Analysis Within the Design Process (May 2015)

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. — Nikola Tesla

14 Gear Noise Prediction in Automotive Transmissions (August 2015)

Due to increasing requirements regarding the vibrational behavior of automotive transmissions, it is necessary to develop reliable methods for noise evaluation and design optimization. Continuous research led to the development of an elaborate method for gear noise evaluation. The presented methodology enables the gear engineer to optimize the microgeometry with respect to robust manufacturing.

15 Basic Spur Gear Design (November/December 1988)

Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.

16 The Importance of Integrated Software Solutions in Troubleshooting Gear Whine (May 2015)

NVH — noise, vibration and harshness — is a key issue in the design and development of modern transmission and driveline systems.

17 Fundamental Study of Detection of Plastic Gear Failure Signs (March/April 2015)

This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.

18 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

19 Rattle: Addressing Gear Noise in a Power Take-off (January/February 2012)

At Muncie Power, the objective of noise and vibration testing is to develop effective ways to eliminate power take-off (PTO) gear rattle, with specific emphasis on PTO products. The type of sound of largest concern in this industry is tonal.

20 Innovative Analysis and Documentation of Gear Test Results (September/October 2008)

In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate, cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.

21 Space Station Solar Power Compromised by Balky SARJ Unit (March/April 2008)

Undue vibrations, power spikes and grit give NASA pause.

22 New Approaches in Roll Testing Technology of Spiral Bevel and Hypoid Gear Sets (May/June 2005)

This paper presents a new approach in roll testing technology of spiral bevel and hypoid gear sets on a CNC roll tester applying analytical tools, such as vibration noise and single-flank testing technology.

23 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

24 The Relationship of Measured Gear Noise to Measured Gear Transmission Errors (January/February 1988)

Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

25 At the PEEK of the Polymer Food Chain (June 2010)

In the hypercompetitive race to increase automobile efficiency, Metaldyne has been developing its balance shaft module line with Victrex PEEK polymer in place of metal gears. The collaborative product development resulted in significant reductions in inertia, weight and power consumption, as well as improvement in noise, vibration and harshness (NVH) performance.

26 Finishing of Gears by Ausforming (November/December 1987)

Almost all machines or mechanical systems contain precision contact elements such as bearings, cams, rears, shafts, splines and rollers. These components have two important common requirements: first, they must possess sufficient mechanical properties, such as, high hardness, fatigue strength and wear resistance to maximize their performance and life; second, they must be finished to close dimensional tolerances to minimize noise, vibration and fatigue loading.

27 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

28 Evaluation of Methods for Calculating Effects of Tip Relief on Transmission Error, Noise and Stress in Loaded Spur Gears (January/February 2012)

The connection between transmission error, noise and vibration during operation has long been established. Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.

29 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

30 Topological Gearing Modifications: Optimization of Complex Systems Capable of Oscillation (May 2014)

Vibration and noise from wind turbines can be significantly influenced - and therefore reduced - by selecting suitable gearing modifications. New options provided by manufacturers of machine tools and grinding machines, and especially state-of-the-art machines and controls, provide combined gearing modifications - or topological gearing corrections - that can now be reliably machined. Theoretical investigations of topological modifications are discussed here with the actual machining and their possible use.

News Items About vibration

1 New Vibration Mounts from AAC Feature Finger-Flex Ring and Bushing Isolators (April 2, 2006)
The new V10Z 4 Series of vibration mounts from Advanced Antivibration Components feature unique "Finger-Flex" isolators which are designe... Read News

2 Rex Cut’s Mounted Points Reach Deep Into Channels with Little Vibration (February 6, 2007)
A line of mounted available in various shapes and sizes to fit into channels and other contoured spaces for repairing and maintaining mol... Read News

3 Helix Wiper Geometries Reduce Vibrations and Increase Tool Life (February 13, 2008)
Seco Tools Inc. recently unveiled Helix wiper geometries for operations in high-feed machining of case hardened steels where standard wip... Read News

4 GTI Releases iPad Vibration Analysis Tool (January 31, 2011)
GTI Spindle Technology, Inc., a provider of foreign and domestic machine repair services, maintenance and machine optimization has recent... Read News