• TOPICS
    • Design
    • Manufacturing
    • Inspection
    • Heat Treating
    • Lubrication
    • Materials
    • The Gear Industry
    • Gears by Type
  • MAGAZINE
    • Current Issue
    • Departments
    • Archives
    • Subscribe
    • Advertise
  • NEWSLETTER
    • Subscribe
  • VIDEO
    • Gear Technology TV
      • Ask the Expert Live
      • Revolutions
    • Industry Videos
  • BLOGS
  • BUYER'S GUIDE
  • NEWS and EVENTS
    • Product News
    • Industry News
    • Events
  • ADVERTISING
    • Brand Awareness
      • Print: Display Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Newsletter Sponsored Content (Native Advertising)
    • Response & Lead Generation
      • Online: Sponsored Content (Native Advertising)
      • E-mail: Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • Online: Buyers Guide
    • Print Advertising
      • Print: Display Advertising
      • Print: IMTS Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
      • Print: Specifications
    • Online Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • Online: Buyers Guide
      • Online: Specifications
    • E-mail Advertising
      • E-mail: E-Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Specifications
    • Special Promotions
      • Print: IMTS Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
  • CONTACT US
  • AGMA
    • Membership
    • Events
    • Education
    • Emerging Technology
    • AGMA Media
    • Standards
Subscribe
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data

High-Temperature Testing of Stanyl Plastic Gears: A Comparison with Tensile Fatigue Data

March 1, 2010
This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear designers to design plastic gears using actual material data.
Manufacturing Inspection Materials Machine Tools Rebuilding Testing Plastic Technical Plastic Gears
KEYWORDS materials plastic gears stanyl testing
  • Download This Article

  • Related Articles

    Full-Load Testing of Large Gearboxes Using Closed-Loop Power Circulation

    Mechanical Behavior and Microstructure of Ausrolled Surfaces in Gear Steels

    Influences of the Residual Stress Condition on the Load-Carrying Capacity of Case-Hardened Gears

Free Gear Technology Subscriptions
Subscribe
Free Gear Technology Subscriptions
Subscribe
FEATURED VIDEO
  • Kapp3
    Kapp Niles ZP 20 Set-up
November 29, 2021
RECOMMENDED
  • Grinding Slow, Grinding Fine

    June 27, 2022
    grinding-large-gear.jpg
  • Nondestructive evaluation of stresses and stress-related defects in gears

    June 27, 2022
    nondestructive-testing.jpg
  • Technology Advancements in EV Inspection

    June 27, 2022
    edrive-inspection.jpg
  • IMTS 2022 Booth Previews

    July 14, 2022
    imtsmap.jpg
  • Preview of 3D Printing at IMTS 2022

    July 14, 2022
    3d-printed-gear.jpg
  • IMTS 2022 Booth Previews

    July 14, 2022
    imtsmap.jpg
  • Preview of 3D Printing at IMTS 2022

    July 14, 2022
    3d-printed-gear.jpg
  • Grinding Slow, Grinding Fine

    June 27, 2022
    grinding-large-gear.jpg
  • Subscribe
  • Advertise
  • Contribute
  • AGMA
Powered byAGMA
Copyright © 2022 Gear Technology
  • Privacy Policy
  • Contact