When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.
With the aim of reducing the operating noise and vibration of planetary gear sets used in automatic transmissions, a meshing phase difference was applied to the planet gears that mesh with the sun and ring gears.
Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.
In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.
It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.
Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.