This method of testing large gearboxes or, indeed, any power transmission element, had numerous advantages and offers the possibility of large savings in time, energy, and plant, if the overall situation is conducive to its use. This usually requires that several such units need to be tested, and that they can be conveniently connected to each to each other in such a way as to form a closed-loop drive train. No power sink is required, and the drive input system has only to make up power losses. The level of circulating power is controlled by the torque, which is applied statically during rotation, and the drive speed. Principles, advantage, and limitations are described, together with recent experiences in the only known large-scale usage of this technique in Australia.
Whether gear engineers have to replace an old gear which is worn out, find out what a gear's geometry is after heat treatment distortion, or just find out parameters of gears made by a competitor, sometimes they are challenged with a need to determine the geometry of unknown gears. Depending on the degree of accuracy required, a variety of techniques are available for determining the accuracy of an unknown gear. If a high degree of precision is important, a gear inspection device has to be used to verify the results. Frequently, several trial-and-error attempts are made before the results reach the degree of precision required.
What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.
Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.
This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.
Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout.
Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.
An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.
This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.
Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.
In the lubrication and cooling of gear teeth a variety of oil jet lubrication schemes is sometimes used. A method commonly used is a low pressure, low velocity oil jet directed at the ingoing mesh of the gears, as was analyzed in Reference 1. Sometimes an oil jet is directed at the outgoing mesh at low pressures. It was shown in Reference 2 that the out-of-mesh lubrication method provides a minimal impingement depth and low cooling of the gears because of the short fling-off time and fling-off angle.(3) In References 4 and 5 it was shown that a radially directed oil jet near the out-of-mesh position with the right oil pressure was the method that provided the best impingement depth.