Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout.
Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.
The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.
The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate
backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which
may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.
The modern day requirement for
precision finished hobbed gears, coupled
with the high accuracy characteristics of
modern CNC hobbing machines, demands high tool accuracy.
Gear manufacturing schedules that provide both quality and economy are dependent on efficient quality control
techniques with reliable measuring equipment. Given the multitude of possible gear deviations, which can be found only by systematic and detailed measuring of the gear teeth, adequate quality control systems are needed. This is especially true for large gears, on which remachining or rejected
workpieces create very high costs. First, observation of the gears allows adjustment of the settings on the equipment right at the beginning of the process and helps to avoid unproductive
working cycles. Second, the knowledge of deviations produced on the workpiece helps disclose chance inadequacies on the production side: e.g., faults in the machines and tools used, and provides an opportunity to remedy them.
Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.
It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.