As the challenges in bevel and hypoid gear manufacturing need to be addressed, the objective of this paper is to show the tool and process design can be optimized based on the results of the manufacturing simulation BevelCut.
The main objective of this study is to perform an experimental evaluation of the structural model of a five-planet first planetary stage from a modern 6MW wind turbine gearbox.
This paper deals with the residual stress depth profiles in case-carburized gears, their effects on the fatigue behavior as well as the enhancement of ISO/TS 6336-4 to include the consideration of tensile residual stresses in the tooth core area. For this purpose, an equation is also presented with which these tensile residual stresses can be estimated so that they can be used in the enhanced evaluation of TFF risk.
This report discusses grain size and its influence on metallurgical properties including its effect on yield strength, ultimate strength, fatigue strength, and fracture toughness. Also discussed are manufacturing issues such as heat treatment, hardenability, and machinability.
Bevel gears are widely used in various industrial applications, such as automotive, aerospace, and marine industries, due to their ability to transfer power between non-parallel shafts. The conventional manufacturing of bevel gears involves several time-consuming and costly processes, including gear blank preparation, gear cutting, and gear finishing. The increasing demands on gear components regarding increasing power density, reducing installation space, reducing weight, and increasing efficiency are also reflected in the design of gear components. The reduction of installation space and weight as well as the increase in power density often leads to an optimized wheel body design that interacts with the gearing in terms of load capacity and stiffness. This leads to an increase in the required geometric degrees of freedom (DOFs). Due to the resulting complex wheel body shapes and different production-related effects, production-related geometry adjustments may also be necessary. Tools for evaluating the gearing in combination with the wheel body shape and its influences nowadays form the basis for unlocking the holistic optimization potential of transmission components.
The objective of this report is to determine the origin of the phrase “profile shift.” Several technical books, technical papers, and industrial standards were reviewed for nomenclature associated with profile shift. The phrase “profile shift” translates directly to the German term “Profilverschiebung,” which originated in the last quarter of the 19th century. At first, profile shift was used to avoid undercutting pinions with small numbers of teeth. Later, it was recognized that profile shift improved the load capacity of the gear mesh and extended the service life of manufacturing tools.
The toothed belt and pulley system known by the designation T, which has been selected as an example within this paper, was developed in the 1950s and standardized first in DIN 7721 (1977) and then in ISO 17396:2014. In this case study, the authors check if a single hob can properly cut T5 profile pulleys with 25 and 30 teeth—and if so, define the range of the number of teeth covered by this hob.
This investigation reviews calculations using ISO/TS 6336-22 Method A and Method B, comparing the calculations against field results. Extensive reviews were made of geometry, surface roughness, load conditions, and lubricant conditions to best understand the influences of micropitting on each example and the applicability of the calculations to the results.
For the research developed in this work, an existing simulation model of the generating gear grinding process based on a penetration calculation approach is used. Further, an extension of the model considering a realistic modeling of the grinding worm topography and the macro movements of the grinding worm during the process is presented. The result of the simulation is the microinteraction characteristics throughout the grinding of the gear flank. In the end, the information about microinteraction characteristics obtained will be used for the calculation of force and energy in generating gear grinding.
In the present paper, a spline-joint design and the extension of a back-to-back test rig were presented, which enable the testing of crowned spline-joints under high rotational speed, medium torque, high test temperature, and angular misalignments.