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As a community, we gear engineers collaborate and share ideas to progress our collective capability. Technology progresses based on 
our efforts, and we have seen solid advances in the performance of our products as they become quieter, cheaper, more efficient, and 
more power dense. The pages of this magazine (past and present editions) are filled with examples where talented engineers have dug 
deeper into a subject using a more precise approach to a particular area concerning gear performance. The implied belief is always 
that greater precision (complexity) in the calculations brings greater accuracy (alignment with reality). 

Of all the performance characteristics of gears, durability/reliability is the most important. No matter how quiet, cheap, or effi-
cient a machine is, it counts for nothing if operation fails. ISO 6336 delivers the standard for how to design gears, so one might 
assume that every gear engineer universally has a firm grasp of how to target a specific level of reliability—how to achieve the spe-
cific trade-off between over-design (excess size, weight, cost) and under-design (excess failures)—along with a statement on what 
is the anticipated failure rate for a given design. However, this turns out not to be the case. 
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A safety factor of 1.0 indicates 1 per-
cent of the population will fail. However, 
if a different safety factor (say 1.2) is 
achieved, no information is given by 
ISO 6336 about the failure rate. A range 
of different research papers exist that 
explore the variability of gear failures, 
converting this data into numbers suit-
able for prediction through simulation, 
and these were summarized in a Gear 
Solutions article a few years ago (Ref. 1). 
Surely this provides the answers.

Unfortunately, the different sources 
suggest data that give wildly varying 
outcomes in predicted reliability (Ref. 
2). The spread of results is not trivial. 
Take the safety factor of 1.2. Depending 
on which reference values for reliability 
you take, the predicted failure rate may 
be either 0.38 percent or 3x10-14 per-
cent, (Ref. 3) i.e., from “reasonably fre-
quent” to “vanishingly improbable even 
if applied to all the machines mankind 
has ever made”! It is almost as though 
you can “decide what result you want, 
and you will find a paper to give you 
that result.”

This is not to say that gear design-
ers are clueless or negligent. In prac-
tice, each company has values in tar-
get safety factor/stress that have been 
developed and refined over the years 
based on experience and ‘not getting 
into trouble’, to be handed down to the 
next generation. However, this is still a 
long way from really being able to carry 
out a quantifiable trade-off between 
gear center distance (or any other design 
parameter) and failure rate. Hands up—
which gear engineer wants to admit to 
their client or their boss that they do 
not really have any idea how many fail-
ures will occur for the gears that have 
just been designed? This is not how it is 
supposed to be. 

So, despite all the efforts of gear 
researchers over the decades, there is 
surprisingly little agreement on how to 
predict what is the most important per-
formance characteristic during design. 

What is more is that this is reflected 
in another group of engineers with an 
interest in gear reliability—the mainte-
nance profession. For any expensive or 
safety-critical asset, knowing how long 
to run a machine, when to maintain 
it, and when to shut it down, is vitally 
important. Maintain too often and large 

Safety Factor

Standard Deviation 
as % of Mean 1.0 1.1 1.2 1.3

3 1 1.3e-5 3e-14 -

8 1 0.057 2.8e-3 1.47e-4

13 1 0.24 0.064 0.018

18 1 0.43 0.21 0.1

23 1 0.6 0.38 0.26

Table 1—Percentage failure rates at different safety factors depending on which reference data 
you take for the variability of gear material strength.
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costs are guaranteed, too infrequently 
and failure may occur, risking even 
higher costs and safety problems. 

Practices such as Reliability Centered 
Maintenance (RCM) were developed to 
balance risks and optimize maintenance 
schedules, using a data-driven approach. 
So, what do RCM practitioners say about 
gears? Yet again, we see a variation in 
the recommended data for gear reliabil-
ity (Ref. 4) that extends even wider than 
that from the design analysis research 
papers. Again, you can pretty much make 
up whatever result you like, and you can 
find data to give you that result. The situ-
ation is no better for our close cousins 
in the world of rolling element bearings. 
Here, the judgment is clear—major orga-
nizations such as NASA (Ref. 5) and the 
principal reference book for RCM (Ref. 
6) written by one of its founders (Ref. 7) 
have decreed that bearings fail at random.

So, it is a salutary thought that, despite 
all our efforts to characterize the behav-
ior of gears, designers do not really know 
what their failure rate will be, and those 
who maintain the machines that contain 
gears think they fail at random. 

Some have suggested that this will 
change. “Big Data” and “machine learn-
ing” are on their way to rescue us! 
Everything will be monitored, observed, 
and correlated. “In the future, there will 
be no need for physics-based simula-
tions, as everything will be a regression 
algorithm,” was how one leading engi-
neer put it at a conference (Ref. 8). 

This approach has profound prob-
lems. Firstly, without a physics-based 
framework, all data, on every machine, 
needs to be recorded and stored for-
ever—you can never know which snip-
pet of data is irrelevant and which will 
hold the key to insight. A few short 
minutes of rough calculations indicate 
that this would lead to absurd quantities 
of data being retained that would incur 
vast costs and, incidentally, lead to huge 
energy bills and environmental damage. 

The second problem has been high-
lighted by the RCM community for 
over 45 years, which is that catastrophic 
failures tend to be very rare, mean-
ing that there is little or no data from 
which failure models can be derived—
take helicopter gearbox failures as an 
example. This is what is known as 
Resnikoff ’s conundrum (Ref. 9).

Hexagon takes a different approach. 
Essentially, it is not physics or data, but 
physics and data—combining the estab-
lished physics-based framework with the 
opportunities that Big Data and big pro-
cessing capability bring. Big Data has its 
role to play in providing hitherto unprec-
edented quantities of data, but it needs to 
be interpreted within the framework of 
existing methods such as ISO 6336. 

It is all very good to describe grand 
ideas with a broad brush, but the devil 
is in the detail and the proof that it 
works relies on demonstrating an imple-
mentation that delivers value. This has 
been the focus of Hexagon’s work over 
recent years with a number of globally 
renowned vehicle manufacturers. 

The starting point is the vehicle usage 
data. Every vehicle gearbox is designed 
according to a duty cycle, which is 
intended to represent the usage that 
the gearbox will experience in opera-
tion. It may be accelerated/condensed 
(for the purposes of rig testing), but it is 
supposed to represent in-service usage 
regarding fatigue damage and reliability. 

The problem is that, out of a fleet of 
nominally identical vehicles, each one will 
be driven differently. Small-scale studies 
have taken place to try to quantify this 
over the decades (Refs. 10, 11), but this 
has done nothing more than to scratch the 
surface of the issue and it has remained far 
too expensive to install telemetry equip-
ment such as strain-gauged driveshafts on 
more than a handful of vehicles. 

The situation regarding vehicle data is 
now changing. The development of con-
nected and autonomous vehicles (CAVs) 
means that vehicle connectivity has reached 
levels not previously seen and large quanti-
ties of valuable data is available. For each 
company and each vehicle this varies, how-
ever, in general, it means that signals from 
the CAN (Controlled Area Network) 

bus are available, including the torque and 
speed of the prime mover (the internal 
combustion engine or electric machine, 
as appropriate) and the selected ratio (if 
appropriate). Depending on the company, 
this can be collected on the vehicle and 
uploaded to the Cloud, whether this is 
periodically, daily, or more frequently (Ref. 
12). Essentially, the driving profile of every 
individual vehicle can be known.

This provides the opportunity for a 
digital twin of the gearbox. Alongside 
Big Data and the Internet of Things 
(IoT), a digital twin is another phrase 
that is widely used, often misused, prom-
ises much, and usually under-delivers. 
What does it mean within this context?

Hexagon’s recent work (Refs. 2, 3) 
goes into the details of the origins of 
the term digital twin (Ref. 13) and the 
basis on which Hexagon uses the term 
in relation to others. In summary, the 
Hexagon digital twin is where the digi-
tal asset shadows the physical asset (the 
machine) during its in-service opera-
tion, extracting operational data and, 
potentially, feeding this back to the 
machine for performance optimization. 

This is separate from a design twin, 
which is essentially a computer-aided 
engineering (CAE) model. However, 
there is a close relationship between a 
CAE model and an in-service digital 
twin. In the case of gearboxes, the digital 
twin was based on Hexagon’s Romax soft-
ware, which has been used worldwide for 
gearbox design since its release in 1994. 
Meanwhile, data handling, processing, 
queuing, results plotting, etc. was han-
dled by the various capabilities of Nexus, 
Hexagon’s open digital reality platform 
for manufacturing that is developed to 
provide connectivity and interoperability 
across all aspects of design, manufacturing, 
metrology, and in-service operation for all 
Hexagon’s client industries.

Figure 1—Overall workflow for Hexagon’s gearbox digital twin.

GEAR TECHNOLOGY | March/April 2024 geartechnology.com32

http://geartechnology.com


The work saw vehicle operational data 
uploaded to the Cloud where the Romax 
Digital Twin calculates fatigue damage 
and then predicts reliability for the gears 
and bearings. The reliability methods used 
were based on recommendations from 
the standards in the case of bearings and 
Hexagon’s best judgment from the lit-
erature search. Detailed explanation and 
justification of this is covered in Hexagon’s 
papers at 2023’s VDI International Gear 
Conference (Ref. 3) and AGMA Fall 
Technical Meeting (Ref. 2). 

One insight has been apparent from the 
start, which is the extent to which vehi-
cle usage varies across the fleet and there-
fore affects gearbox fatigue. Of course, this 
makes sense qualitatively—everyone knows 
that some vehicles are driven hard, some 
gently, and this will influence gear failure 
rates—but acquiring the data meant that 
this impact could be quantified. 

What this showed (Ref. 14) is that the 
variation in vehicle usage is so great that 
carrying out failure analysis purely based on 
vehicle mileage/hours of usage is so grossly 
inaccurate as to be meaningless. Even if the 
simulation model of the gearbox is perfect 
and the components behave with great 
consistency, omitting the variation of vehi-
cle usage from the input data injects such 
enormous variability into fatigue damage 
that the results are nonsense. It is simply a 
case of “garbage in, garbage out.”

In many respects, this explains the 
broad range of reliability data proposed 
by the research papers and used by RCM 
professionals, and the reliance by gear 
designers on experience-based values for 
safety factor. Since it has not previously 
been possible to know the usage data for 
each vehicle, failure analyses have been 
based on mileage/hours and components 
have appeared to fail (approximately) ran-
domly, when this may well not have been 
the case had suitable data been available.

Hexagon’s work is a process of iden-
tifying these key sources of “garbage” 
that cause this randomization and fil-
tering them out, converting “unknowns” 
into “knowns,” which can be quantified in 
the analysis. Rome was not built in a day 
and not all of these have been covered to 
date—the process is slow and steady and 
each time a new factor is incorporated into 
the analysis checks must be made to ensure 
that the results make sense. Nonetheless, 
sufficient work has been carried out to 
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show that, within Hexagon’s wider port-
folio, it can account for variations in gear 
manufacturing (Ref. 15) and road-induced 
shock loads in its further work.

Thus, there is the potential to deliver 
unprecedented accuracy in the predic-
tion of gear (and bearing) failures. The 
intention is to use this to recommend 
service intervals or maintenance inspec-
tions based on vehicle usage. 

The description to this point assumes 
that the prediction of component reli-
ability is perfect and all that is needed 
is accurate input data on vehicle usage, 
gear manufacturing, and shock loads. 
However, this may well not be sufficient. 
Most companies only have a vague esti-
mation as to the fatigue strength of their 
gear materials, and it is highly likely, for 
example, that the data selected by the 
gear designer does not match the mate-
rial’s real performance. Frequently it is 
observed that Romax users automati-
cally plump for “Medium Grade Case 
Carburized Steel” regardless of the actual 
composition of their material, its cleanli-
ness, the capability of their heat treat-
ment process, or their grit blasting/shot 
blasting/shot peening processes. 

This is where the next phase of the digi-
tal twin work comes in. For each vehicle 
in the fleet, the usage data will be known. 
Not many of them will see their gearboxes 
fail but out of a fleet of many thousands, 
some will. Understanding these failures 
on a case-by-case basis will be assisted by 
being able to inspect the usage data to see if 
the vehicle was driven aggressively/unusu-
ally compared to the design assumptions. 
However, the key value comes from aggre-
gating the failure data across the fleet. 

Meeker and Escobar (Ref. 16) 
have illustrated “sample size analy-
sis,” whereby the confidence in a result 
relates to the number of samples being 
tested plus how far along the test 
regime they have lasted. Since we have 
a very large sample size, we can derive 
insight with great confidence even when 
there are just a few failures. 

Adoption of the digital twin across 
a fleet of vehicles will provide sam-
ple sizes and confidence that will dwarf 
the approaches used to date to under-
stand reliability. Often companies sign 
off on a gearbox design by rig testing a 
sample of prototype gearboxes prior to 
the start of production. This sample is 

small—somewhere around 5, perhaps a 
few more. Analysis shows (Ref. 17) that 
this actually provides very little confidence 
in the result. Even university research 
programs, on which the S-N curves of 
gear materials are based, extend to a cou-
ple of hundred samples, although FZG 
can point to a dataset of around 1,000 
pitting and 1,700 bending test results 
for the common case hardening steels 
16/20MnCr5 or 18CrNiMo7-6 (Ref. 18). 
This is all very good if you use one of 
these steels, but Hexagon has still seen 
large variations in results for 20MnCr5, 
for example, owing to variability of heat 
treatment and shot peening, factors which 
are defined by each manufacturer. By 
comparison, vehicle manufacturing com-
panies could build up sample sizes run-
ning into the hundreds of thousands or 
even millions of gears. 

This is not to say that rig testing 
before the start of production should be 
stopped, but rather that the processing of 
vehicle usage data and component failure 
data, combined across a sizeable fleet of 
vehicles/machines, could provide unprec-
edented accuracy in the ability to predict 
component fatigue and reliability.

How would this all actually work? 
Recently (Ref. 17), Hexagon carefully 
stepped through the process for how a 
digital twin could automatically adjust 
the calculation such that the predicted 
failure rate matched the observed failure 
rate. This would not involve throwing 
away ISO 6336, or appending additional 
complexity to its calculation, but simply 
adjusting parameters such as applica-
tion factor, allowable stress, and Weibull 
shape parameter. Note the change in 
emphasis from precision (adding com-
plexity) to accuracy (making sure the 
predictions match the observation). 

Basing the method on ISO 6336 has 
another key advantage, which is that it 
uses the language that existing gear engi-
neers understand. The leading experts in 

Figure 2—Completed digital thread covering the life cycle of gears.

each manufacturer will have learned their 
trade using this approach and have had at 
least 2 decades of experience in its appli-
cation. This approach builds on that expe-
rience and tweaks the input values, pro-
viding evidence to justify such changes. 

The current limitations of ISO 6336 
described apply to all implementations 
of the standards in all codes. ISO 6336 
permits companies to adjust values for 
gear material fatigue strength and appli-
cation factor. What we show here is 
that it is now possible to get a clear 
indication of these values. The answer 
is not to throw away ISO 6336 (as some 
advocates of Big Data suggest (Ref. 8) 
or add further layers of complexity (pre-
cision) to the calculation, but to develop 
an approach that uses each company’s 
data to derive the correct input values 
to make their ISO calculation accurate. 
Prioritize accuracy over precision. 

In summary, there exists the possibility 
to deliver on the grand promises of Big 
Data, digital twins, IoT, etc., promises 
that are too often spoken about in revo-
lutionary, utopian terms, but which usu-
ally fail to deliver. By taking a pragmatic 
approach and taking advantage of recent 
advances to convert important input data 
(vehicle loading, manufacturing accuracy, 
shock loads) from assumed to confirmed 
values, Hexagon is working with its cli-
ents to deliver these promises.

Behind all the gear engineering and 
maths is Nexus, the framework that coor-
dinates all the data and makes the imple-
mentation of the digital twin possible. 
Hexagon’s roadmap sees Nexus taking a 
significant role in the development of dig-
ital twins, extending from vehicle gear-
boxes to other fleets of geared machines 
such as wind turbines, then other fatigu-
ing components and other physics that 
Hexagon covers (noise, heat, etc.). 

Despite failing to live up to expectations 
so far, digital twins can and will deliver, as 
current projects are demonstrating. 

nexus.hexagon.com

Footnote: For those perhaps 
not so familiar with the English 
language and the nuances of 
different definitions, it is per-
haps necessary to emphasize 
the difference between accu-
racy and precision. If two shots 
are close to the bullseye but far 
apart from each other they are 
accurate but not precise. If two 
shots are tightly grouped but 
away from the bullseye, they 
are precise but not accurate. 
If both shots are close to the 
bullseye and tightly grouped, 
they are accurate and precise.
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