A Comparison of Current AGMA, ISO and API Gear Rating Methods

John M. Rinaldo

Introduction

There are many different gear rating methods in use today, and they can give substantially different results for any given gearset. This paper will make it easy to understand the choices and the impact the choices have on gearbox design. Eight standards are included - AGMA 2001; AGMA 6011; AGMA 6013; ISO 6336; API 613; API 617; API 672; and API 677. A brief introduction and history of each standard is presented, and the basic differences between them are highlighted. Two sets of examples are used to illustrate the differences. These examples are presented in both tabular and graphical format, and are fully discussed. The first set contains a wide range of gears, and each gearset is rated by each standard. The second set compares gears designed for a specific set of requirements according to each of these standards. The perils of increasing service factor are mentioned, particularly in regard to high pitch line velocity gears. Finally, there is a discussion of how to make a gearbox more reliable without changing the rating method or service factor. The choice of rating method can have a huge impact on the size of the gearbox, and this paper should help avoid specifying the wrong standard and having an oversized gearbox. It should also be useful as an aid to customers who are unsure of the differences between the standards.

Description of the Standards

API 613 — 5th edition (2003): Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services. Most of the main gearboxes in refineries must conform to this specification. This is the most conservative standard, and if you specify this, you will probably pay substantially more for the gearbox than if another standard was specified. This standard is for parallel shaft helical gear units that are in continuous service without installed spare equipment. The gears may be single or double helical, one or two stage, and may be designed as reducers or speed increasers, but it does not apply to integrally geared units such as integrally geared compressors (which are covered by API 617 and 672). Most of its requirements do not apply to general purpose gears since they fall under API 677; however, gear ratings calculated according to API 613 and API 677 are the same. API 613 covers not only gear rating, but also the related lubricating systems, controls, and instrumentation. It was first published in 1968 based on AGMA formulas, but in 1977, the second edition was published with a very simplified approach. It was designed so preliminary sizing of gearing could easily be done with just a slide rule. It does require the Geometry Factor "J" from AGMA 908, but before the age of computers, this was often estimated from graphs. This simple method is still the one used in API 613, even though slide rules are hard to find and engineers who know how to use them are becoming quite rare. The very conservative ratings stem mainly from basing the material allowable stresses on the lowest grade materials (grade 1) from the AGMA standard in effect in 1977, even though use of the better "grade 2" materials is required. Although AGMA allowable stresses have increased over the years to reflect increasingly stricter metallurgical requirements, improved metallurgy, and extensive field experience, the API ratings have remained unchanged. The sixth edition is currently in development and may be published this year (2018). It appears that the rating equations will change to mirror those in AGMA 2001, but there will be a derating factor introduced so the resulting ratings may be similar to those of the prior editions.

However, it does incorporate language to allow the use of alternate rating methods if the API method would result in excessive pitch line velocity or excessive face width.

API 617 – 8th Edition (2014): Axial and Centrifugal Compressors and Expander-Compressors; Part 3 – Integrally Geared Centrifugal Compressors. This was first published in 1958 and covered only barrel-type centrifugal compressors, since integrally geared centrifugal compressors did not exist at that time. The 2002 seventh edition expanded the scope to cover Integrally Geared Centrifugal Compressors and Expander-compressors. It is now essentially three standards packaged as one. Each section has its own set of annexes, and for integrally geared centrifugal compressors, an annex in part 3 specifies a rating method based directly on ANSI/AGMA 2001. This method specifies how each factor is to be calculated, and then imposes an additional 20% derating factor. So, it is quite conservative, but not nearly as conservative as API 613. The eighth edition of API 617 was published in 2014 and did not change this rating method.

ANSI/AGMA 2001-D04 (2004): Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. AGMA 2001 and 2101 (the metric version) are the basic AGMA gear rating standards that most other AGMA rating standards are based on, and they have evolved from standards originally published in 1946. The ratings calculated by these standards have slowly risen over the years as a result of higher allowable stress numbers that have been introduced along with stricter metallurgical requirements. The user is given some flexibility in selecting the values of the factors to be used in the rating, so even given complete information on a gearset,

Printed with permission of the copyright holder, the American Gear Manufacturers Association, 1001 N. Fairfax Street, Fifth Floor, Alexandria, VA 22314-1587. Statements presented in this paper are those of the author(s) and may not represent the position or opinion of the American Gear Manufacturers Association.

two engineers may use different values for some factors and come up with different ratings using this standard. Therefore, specific application standards such as API 617 part 3, AGMA 6011, or AGMA 6013, provide guidance on selecting the factors to be used in the rating. The AGMA Helical Gear Rating Committee has been working for many years to revise this standard, but it may be a while before a new revision is released.

ANSI/AGMA 6013-B16 (2016): Standard for Industrial Enclosed Gear Drives. This standard is for low- to moderate-speed gears. This, and its metric version AGMA 6113-B16, is a combination of prior standards ANSI/AGMA 6009-A00 and ANSI/AGMA 6010-F97 — which in turn were based on AGMA 480, AGMA 460, and AGMA 420. It presents general guidelines for design, rating, and lubrication of parallel, concentric, and right-angle shaft drives. However, this paper will only consider the rating of parallel shaft gearboxes. For these gearboxes, this standard only applies when the pitch line velocity does not exceed 7,000 ft/min (35.56 m/s). It specifies that ANSI/AGMA 2001-D04 is to be used for the rating, and provides the specific factors to be used. The rating is for 10,000 operating hours, using the least conservative life factors.

ANSI/AGMA 6011-J14 (2014): Specification for High-Speed Helical Gear Units. The first high-speed gear unit standard was adopted in 1943 and has evolved over time. It is now based on ANSI/AGMA 2001-D04 and applies when the pitch line velocity exceeds 6,890 ft/min (35 m/s). The factors to be used for rating are either specified or a specific calculation procedure is given. The rating is for a minimum of 40,000 operating hours, using the most conservative stress cycle (life) factor. However, if the number of stress cycles exceeds the stress cycle factor graph endpoint, then the designer has the option of using the graph endpoint or extrapolating the curve to lower values.

ISO 6336-2006 (with the exception of part 5, released in 2003): Calculation of Load Capacity of Spur and Helical Gears. This standard, which is composed of five separate parts, is largely based on prior DIN standards and is generally accepted everywhere outside of the United States. It contains multiple methods to establish ratings, including method "A" (testing the gears under simulated or actual operating conditions) and various calculation methods. In general, method "B" should be used. There are a number of fundamental differences between the AGMA and ISO rating methods. The ISO standard finds the calculation points for bending strength by fitting an equilateral triangle into the base of the tooth, whereas the AGMA method is to use the Lewis parabola. The ISO dynamic factor is based on shaft vibration and proximity to a critical speed based on a very simplistic model of the shaft, while the AGMA dynamic factor is based mainly on allowable single tooth pitch variation. Yet despite these and other differences, the gear ratings are often fairly similar. The working group ISO/TC60/SC2/WG6 is currently revising Parts 1-3, and a new edition might be published in 2018 or 2019.

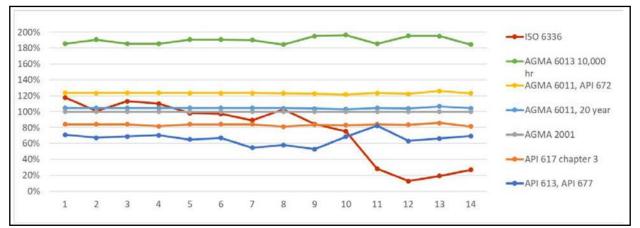
API 672 — 4th edition (2004): Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services. This was originally published in 1979, with the fourth edition published in 2004. This standard directs the user to rate the gears according to ANSI/AGMA 6011.

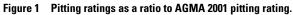
API 677 — 3rd edition (2006): General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services. This was first published in 1989 and used a modified K factor rating method. The 1997 second edition changed the rating method to that given in API 613. The current third edition was published in 2006.

Some Standards Use Service Factors, Others Use Safety Factors

Service factors have long been used as a simple method to provide an appropriate margin when designing gears. API 617, API 672, AGMA 6011, and AGMA 6013 use a service factor that includes the combined effects of safety factor, overload, and reliability (for pitting, these factors are SH, K_0 , Y_z , and for bending SF, K_0 , Y_z). API 613 and API 677 use the service factor as the sole factor, so their service factors also include the dynamic, size, load distribution, stress cycle (life), and temperature factors - plus either surface condition factor (for pitting) or rim thickness factor (for bending strength).

AGMA 2001 allows the use of either service factor or safety factor — but they are NOT interchangeable. ISO 6336 uses safety factors, and in addition to a lot of other factors also uses an application factor. It should be noted that, with the exception of the load distribution factor, the factors used in ISO are calculated quite differently from those used in AGMA.


Differences between Ratings Standards for Specific Gearsets


In this section the maximum power ratings according to six different gear rating methods will be compared for fourteen sets of gears covering a range of sizes and speeds. There are only six unique methods in the eight gear rating standards mentioned here. API 672 states that the gears shall be rated to ANSI/AGMA 6011. Similarly, the section on gear rating in API 677 has the same equations, factors, and limits as API 613, except for a minor difference in allowable L/d ratio (pinion face width to reference diameter) for nitrided gears.

The gearsets used in this comparison are presented in Table 1. All are grade 2 (MQ for ISO) alloy steel, and carburized (58 Rc), nitrided (R 15N 90), or through hardened (321 BN) as noted. No profile shift was used and all sets were run on standard center distance. Speeds range from 700 to 45,000 RPM. The resulting ratings range from 200 to over 20,000 HP. An even wider range of gears could have been analyzed, and additional examples could show more variability, but that probably would not change the general conclusions of this study. The values and factors chosen are sufficient for the purposes of this study, but they were selected for simplicity; they do not represent actual gears in production and should not be used as a recommendation or guide for gear design.

Ratings are for 20 years of continuous operation, except ANSI/AGMA 6011-J14, which specifies that ratings are for a minimum of 40,000 hours. Therefore, for comparison, ANSI/AGMA 6011 ratings are presented both for 40,000 hours and 175,200 hours (20 years). The ANSI/AGMA 6013 ratings are for 10,000 hours, as stipulated. The rating results are presented even if the pinion speed or the pitch line velocity was too high or low for the standard to apply.

Table 1 Geometry a	ind speed	s of exan	ıple gear	sets										
Set Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Туре	increase	increase	increase	increase	increase	increase	reduce	increase	reduce	increase	increase	reduce	reduce	reduce
Bull gear teeth	151	167	151	151	167	167	167	97	173	367	151	173	59	97
Pinion teeth	29	35	29	29	35	35	35	29	35	30	29	35	35	29
Module, mm	5	3	5	5	3	3	3	6	2	2	5	2	3	6
Pressure Angle	20°	25°	20°	20°	25°	20°	25°	25°	25°	25°	20°	25°	25°	25°
Helix Angle	18°	16°	18°	18° Double	16°	16°	16°	25° Double	16°	20°	18°	16°	15°	25° Double
Center distance	18.63	12.41	18.63	18.63	12.41	12.41	12.41	16.42	8.52	16.63	18.63	8.52	5.75	16.42
Face width, inch	6.25	5.50	6.25	8.25	5.50	5.50	5.50	8.00	3.00	2.75	6.25	3.00	4.50	8.00
Reference diameter, inch	6.00	4.30	6.00	6.00	4.30	4.30	4.30	7.56	2.87	2.51	6.00	2.87	4.28	7.56
Input Speed, RPM	3600	3600	3600	3600	3600	3600	3600	4500	3600	3600	3600	3600	3600	4500
Output Speed, RPM	18,745	17,177	18,745	18,745	17,177	17,177	754	1,345	728	44,040	18,745	728	2,136	1,345
Pitch line velocity, ft/min	28,796	19,339	29,456	29,456	19,339	19,339	4,053	8,905	2,702	28,983	28,796	2,702	4,034	8,905
Heat Treatment	Nitrided	Nitrided	Carb.	Carb.	Carb.	Carb.	Carb.	Carb.	Carb.	Carb.	Thru Hard	Thru Hard	Thru Hard	Thru Hard
Notes	RPM above 6013 limit	RPM above 6013 limit	RPM above 6013 limit	RPM above 6013 limit	RPM above 6013 limit	RPM above 6013 limit	RPM below 613, 677, 672, 6011 limits	RPM above 6013 limit	RPM below 613, 677, 672, 6011 limits		RPM above 6013 limit		RPM below 613, 677, 672, 6011 limits	

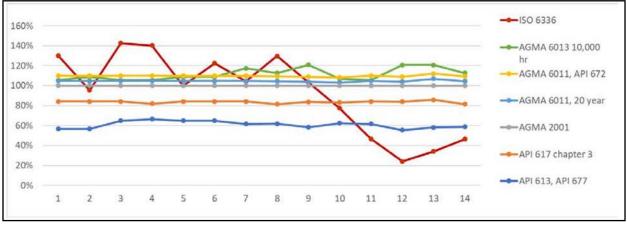


Figure 2 Bending ratings as a ratio to AGMA 2001 bending rating.



Figure 3 Ratio of bending rating to pitting rating.

Because of the wide range of power these sets are capable of transmitting, the results in Figures 1 and 2 are presented as the ratio of the rating to the ANSI/AGMA 2001-D04 rating. Each line represents one rating standard. A line chart is used for clarity; it is not meant to imply any relationship between different gearsets other than they are being rated with the same method. The order of the sets is arbitrary, except that the nitrided sets are presented first, followed by the carburized sets, and then the through hardened ones. For the pitting ratings shown (Fig. 1), all the ratings that use AGMA methods as their basis are quite consistent for the cases studied. API 613 ratios show a lot more variability, due to factors in the AGMA standards that API 613 does not use. The major change comes with a change to through hardened material (sets 11-14), and ISO rates through hardened steels far lower than AGMA does. This may be due to historical differences - particularly cleanliness - between the through hardening steels used in Europe and those used in the United States.

For most of the example gearsets, the AGMA 6011 ratings are about double the API 613 ratings. This is a staggering difference! The API 613 ratings for case and surface hardened gears are consistently the lowest, both for bending and pitting. The highest ratings come from ISO 6336 and ANSI/AGMA 6013, though the inclusion of 6013 may be a bit unfair since it uses stress cycle factors for only 10,000 hours of operation. All the other AGMA ratings are fairly consistent.

Figure 2 compares the bending ratings to ANSI/AGMA 2001-D04. Again, all the

ratings that use AGMA methods as their basis are quite consistent for the cases studied. It is not surprising that the ISO 6336 methods do not track the AGMA method very well at all, since the rating methods are quite different. Also, the low ISO ratings for sets 11–14 correspond to the through hardened gearsets.

The ratio of bending rating to pitting rating is shown for each example and each rating method in Figure 3. When the ratio is above 1.0, i.e. - when the bending rating is above the pitting rating-bending ratings are ignored and the surface durability ratings determine the gearset ratings. It can be seen that whether it is pitting or bending that determines the overall rating, both depend on the gearset in question and the rating standard used. For any standard, examples can always be found where pitting limits the set rating, and other examples will show that bending limits the rating.

Many designers strive for gearsets that have close to "balanced" ratings, but often with the pitting rating slightly lower than the bending rating. This means that the gears are more likely to pit than break. It is far better for the gears to become noisy due to pitting and therefore get inspected and repaired or replaced, rather than breaking and potentially ruining the whole gearbox. But a balanced gearset according to one method may not be balanced according to another method.

It should be noted that when using AGMA or API standards, usually the same service factor is used for both the pitting rating and bending rating. However, when using ISO 6336, often a much higher safety factor is used for bending than is used for pitting.

It is interesting to note that the graphs show that the ratings remain consistent even outside the scope specified in the standards. However, a standard should not be specified if the application is not within the scope.

Most gear experts recognize that the ratings from the standards are just a rough approximation of the power that can be safely transmitted through the gears. The truth of this becomes obvious as the results of this study are examined. There is only one power level that will cause failure after a specific number of hours of operation, yet different standards give vastly different approximations of what that load is. Since gear failures are not common, clearly even the least conservative standards are sufficient for most applications. Yet when a standard has been specified, the gear vendor must ensure that the gear rating according to the specified standard meets the specified power.

The Positive and Negative Consequences of Imposing a More "Conservative" Design

Purchasers sometimes try to assure themselves that gears will be very reliable by the selection of a "conservative" rating standard or by increasing the required safety or service factors. The advantage of doing this is the supposedly lower chance of failure. However, if an adequately sized gearset will not fail, it is already sufficiently reliable. A larger gearset will not be more reliable. For low-speed sets, the only negative consequences of being "conservative" may be size, price, and slightly higher operating costs due to higher losses. For high-speed sets, being "conservative" can lead to high face widths or high pitch line velocities that can have significant negative consequences. Increased face width not only makes the gearset more sensitive to alignment, it is detrimental due to the heating of the oil, which is transported across the face width as the contact line sweeps across. The further the oil travels across the face, the higher its temperature gets. Increased pitch line velocity leads to increased sliding velocities, which also lead to a higher temperature in the contact zone and higher risk of varnishing or scuffing. In some cases, high tooth temperatures have resulted in a metallurgical transformation that distorted the helix, thereby adversely affecting the load distribution across the tooth flanks. As John Amendola (CEO, Artec Machine Systems; AGMA standards committees) has said: "So bigger is not necessarily more conservative. In reality, the most important factors are good load distribution, low sliding velocities, and proper lubrication."

How to Reduce the Risk of Failure

The load that will cause failure depends on many things, so an accurate rating can only be determined by testing. However, in many cases, testing to determine a safe load over the full life of a gearbox is not practical — which is why rating standards exist. The rating standards provide minimum requirements that must be met for the rating to be valid. The gear cost can be minimized by just meeting these minimum requirements, but by going beyond them, an extra margin of safety can be achieved. Rather than simply increasing the required service or safety factors or specifying the use of a very conservative rating standard, every aspect of the gearbox should be carefully examined. The first step is to determine the maximum load and the load spectrum based on a full analysis of the application. Additionally, there are many things that should always be considered —especially for critical applications. There are many standards - such as those from AGMA and ISO, as well as many books – that provide a great deal more information on these topics. The following very brief list just touches on some of the things that should be considered to reduce the risk

of a failure:

- Lubricant used. The viscosity, the FZG load stage, the base stock, and the additives used all have a significant role in the life of a gearset. The lubricant can make the difference between successful operation and failure not only for pitting, but also for scuffing and micropitting. It is essential to keep the oil free of water and to change it at appropriate intervals. Proper filtration of the lubricant is critical, since entrained particles can result in wear. In some cases, use of an electrostatic filter to remove submicron particles may even be justified. See ANSI/AGMA 9005-F16 for more information on lubricants.
- Application of lubricant to the gear teeth. While in some cases, occasionally painting tar on the teeth of very large and slow-moving gears may be sufficient, and dip or splash lubrication is adequate for moderate speed gearing (up to about 15 m/s or 3000 ft/min pitch line velocity), high speed gears require spray lubrication. This spray may be directed into the in-mesh of the gears, or on higher speed gears into the out-mesh where the partial vacuum created by the separating teeth helps suck the oil mist onto the tooth flanks, or the system may use multiple nozzles on both the in-mesh and out-mesh to provide optimal lubrication and cooling. When spraying both the in-mesh and out-mesh, usually about one third of the flow goes to the incoming side for lubrication and the rest goes to the outgoing side for cooling.
- Temperature of the gear teeth. The gear teeth normally are cooled by the flow of lubricant, both on the teeth themselves and on their sides. While sufficient lubrication is essential, with high speed gears, excessive lubricant flow can be detrimental and lead to excessive heat generation and power losses. In high speed gears, oil that gets between the teeth is often ejected axially, sometimes at supersonic speeds when the gears have high pitch line velocity and low helix angles. Excessive oil mist surrounding the gears can lead to high windage losses, raising the bulk temperature of the gears. Excessive temperatures in the contact zone can lead to varnishing, scuffing, or other problems. With pressure-fed systems, the oil temperature is typically controlled with oil coolers. When the gearbox is in a cold environment, it is good practice to preheat and circulate the oil prior to startup so it has an acceptable viscosity

during startup.

- Micro-geometry of the gear teeth. Proper profile modifications will decrease the chance of problems. Highly loaded gears often require tip relief to avoid the tip of the driven gear from gouging into the flank of the driving gear. Helix (lead) modification can, and in many cases should, be used to compensate for tooth deformations that will occur during operation, both from the load and the temperature profile of the tooth flanks. The use of ISO1328-1 class 4 or better tolerances for the tooth flanks may be appropriate for some gears to assure that the specified modifications are achieved, although the use of such tight tolerances may not be appropriate for general purpose or low speed gears where class 6 or 7 is considered good.
- *Alignment.* The best gears in the world can fail if not properly aligned. In addition to the parallelism of the bores machined into the gearbox, bearing play, differential thermal growth, and internal or external load-induced distortions of either the gearbox or gears themselves should be accounted for.
- *Material used.* The gear material is obviously critical to the life of the gears. It is important to consider the specific material chemistry, the material cleanliness, its processing (hot or cold worked, total reduction ratio, forged or rolled), and heat treatment. The following brief comments barely scratch the surface of gear metallurgy. For more information, see AGMA 923-B05 or consult with a gear metallurgist.
 - The appropriate alloy should be selected for the application. Some steels are easier to harden than others, but note that there can be significant differences between different batches of the same alloy. The material chemistry of the specific batch can affect the hardenability. Jominy end-quench tests can be used to assess hardenability, and published ranges can be used to aid in the selection of which alloy to use. They may also be incorporated into the specification of the properties the alloy must have.
 - Material cleanliness is critical, since inclusions can be stress risers and be the initiation points for failures. Cleaner steels can safely carry higher loads.
 - ¤ The processing of steel from billet to final part can have an effect on the

life of the part. Sufficient reduction ratios are beneficial, and appropriate forging, such as pancake forging for bull gear disks, can result in favorable grain size and structure.

- Heat treatment is used to obtain the proper hardness distribution in the gear. Specification of a better hardenability material can be negated by improper heat treatment. The spacing of the gears in the furnace and during quenching, the quenchant used, and the flow rate and amount of agitation of the quenchant will all affect the heat treatment results. Larger sections are more difficult to properly heat treat than small ones, and so may require materials with better hardenability.
 - ♦ Hardness and strength are generally proportional, so the harder the gear, the higher the rating will be. For a given required power, it is not unusual for a higher hardness specification to result in a less expensive gear since the harder gear can be smaller. For case or surface hardened gears, just as critical as the hardness is the hardness profile. If the hardness falls too rapidly with depth, then at some depth from the surface, the sub-surface stress can exceed the strength, leading to a subsurface failure that can grow to the surface. Jominy data along with knowledge of the part size, heat treatment, and quench severity is useful to predict the hardness profile.
 - ♦ Use of through hardened gears is common, even though their hardness is considerably lower than that of surface or case hardened gears. Since they are heat treated before machining, they can be machined to final size without worrying about the changes that can occur during heat treatment. Machining becomes more difficult or impossible as hardness increases, but the hardness cutoff point for through hardened gears varies by manufacturer, and it has increased over the years due to advances in manufacturing technology.
 - Flame or induction hardening can produce a hardened surface layer, and dual frequency induction hardening can produce a particularly good surface layer. However, API 613 and 677 do not recognize flame or induction

hardening. Also, these hardening processes require numerous test pieces to certify the process, so they may not be suitable for very low volume or one-off production.

- Nitriding produces a very thin but very hard surface layer, so it is very good at reducing the chance of pitting.
- ◊ Some people consider case carburized gears to be the best, and in some cases, they may also be the least expensive since they can be smaller than other gears rated for the same power. Case depth needs to be controlled to be sure that it is sufficient to avoid a subsurface failure, but not excessive since gear tooth tips may become brittle and break.
- ◊ It is not unusual to use different hardness for the pinion and bull gear specifications. When there is a difference, the pinions are usually harder due to higher stress in the pinions, resulting from their tooth shape and their having more stress cycles.
- Surface finish: Improved surface finish generally leads to improved gear performance. In addition to minimizing surface roughness, the lay of any machining or grinding marks can be important. There used to be a theory that some roughness was required to hold an oil film, but testing on isotropic superfinished surfaces has disproved that. Careful grinding can produce a 16r_a (micro-inch) finish, while isotropic superfinishing can bring it down to $2r_a$. Claimed benefits include reduced noise, reduced gear wear, increased power output, increased part life, and lower operating costs. Of course, as with all manufacturing processes, a cost benefit analysis should be performed to determine the optimal level of surface finish for the application.
- Dynamic loads including vibration: It is critical to know the maximum load that the gearset will ever see, and preferably the lifetime load spectrum will be known. The entire wind energy business was almost brought to a complete halt due to miscommunication of maximum loads. Vibration, either lateral or torsional (which may be difficult to detect), can ruin gears. Proper analysis during the design stage can generally be used to guide any necessary changes so damaging vibrations will not occur during operation.

A good gearbox designer or vendor will look at all of these, and thus be able provide a very reliable design no matter which standard is specified. However, the size and therefore the price of the gearbox will be affected by the rating standard chosen.

Effect of Rating Standards on the Size of a Gearset Designed for a Specific Application

As an example of the effect the rating standard can have on the size of a gearbox, Table 2 presents designs of gearsets that are rated at 4,800 HP for 20-year life, according to five standards. In all cases, the rating is pitting limited. The only changes made to meet the rating were to adjust the module and face width, keeping the L/D ratio for the pinion at approximately 1.0. While it would be very unusual to actually make gears with such odd modules, this example serves to illustrate the average effect rating standards have on one particular set of design conditions. Actual designs would use standard modules, so changes in numbers of teeth would be made to get close to the rating. If only number of teeth were changed, then for designs such as this, which are close to being balanced between pitting and bending, increasing the number of teeth could cause the set to become bending limited.

Since the cost of a gearbox is roughly proportional to the volume of the gears, the API 613 gearbox will cost about 60% more, even if all other design criteria are kept the same. But even if the extra cost of the gearbox is not a concern, the increased pitch line velocity and increased face width should be. It can be seen that for this case, use of API 613 results in almost 20% higher face width and pitch line velocity than that which would result from designing to AGMA 6011. While this may not be a serious issue when the pitch line velocity is not very high, it can become a major problem when the power and speed requirements require a pitch line velocity approaching or exceeding 30,000 ft/min (150 m/s). So being "conservative" in the specifications can sometimes result in a compromised design.

Conclusions

When a gearbox is properly specified and built so it will not fail, then there is no way to make it more reliable. There is an old engineering saying: good enough is best. Specifying a different standard or increasing service or safety factors can make the gear box more expensive, but if the gearbox would be adequate without the additional expense, then nothing is gained by adding requirements. In fact, being too conservative in the specification of a gearbox may have negative consequences.

It is important to fully understand all the loads and environmental conditions the gearbox will be subjected to so that the gearbox requirements can be properly specified. It is very important to properly specify all loads, the expected operating life, and any special circumstances so the proper factors can be specified for the rating. The standard specified for gearbox rating and the service or safety factors should be appropriate for the application and should not be excessively conservative. O

References

- 1. API 613 Sixth Edition: Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services.
- API 617 Eighth Edition: Axial and Centrifugal Compressors and Expander-compressors; Part 3 — Integrally Geared Centrifugal Compressors.
- API 672 Fourth Edition: Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services.
- API 677 Third Edition: General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services.
- AGMA 2001-D04: Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.

		f rating stan		ANICI/ACMA	API 617	A DI C12
	units	ISO 6336	ANSI/AGMA 6011 20 year	ANSI/AGMA 2001	chapter 3	API 613, API 677
Number of teeth, bull gear		173	173	173	173	173
Number of teeth, pinion		35	35	35	35	35
Module	mm	2.84	2.97	3	3.18	3.54
Pressure Angle	deg	25	25	25	25	25
Helix Angle	deg	16	16	16	16	16
Material		carburized	carburized	carburized	carburized	carburized
Face Width	inch	4.03	4.2	4.3	4.65	5.06
Pinion Pitch Diameter	inch	4.071	4.257	4.300	4.558	5.075
L/D		0.990	0.987	1.000	1.020	0.997
Gear Pitch Diameter	inch	20.123	21.044	21.257	22.532	25.083
Pinion volume	inch^3	52.5	59.8	62.5	75.9	102.3
Gear volume	inch^3	1281.7	1460.8	1526.0	1854.1	2500.3
Total volume	inch^3	1334.1	1520.6	1588.4	1930.0	2602.6
Input Speed	rpm	3600	3600	3600	3600	3600
Output Speed	rpm	17794	17794	17794	17794	17794
Pitch line velocity	ft/min	18965	19833	20034	21236	23640
Pitch line velocity as % of ANSI/AGMA		94.7%	2001 99.0%	100.0%	106.0%	118.0%
Volume ratio to 2001		84.0%	95.7%	100.0%	121.5%	163.8%

Note: The ANSI/AGMA 6013 standard was not included in this comparison since it specifies 10,000-hour life, as opposed to the 175,200-hour (20-year) life used in these examples.

John Rinaldo is retired from Atlas Copco Comptec LLC where for 25 years he designed gears for highspeed, integrally geared centrifugal compressors. He is currently a member of

the API 613 taskforce, and serves as the vice chair of the AGMA Gear Accuracy committee and the Nomenclature committee. He is the convener of ISO TC60/ SC1/WG4 "Terminology and notation of gears" and is the U.S. delegate to ISO TC60/ WG2 "Accuracy of gears" working group. His varied career started with the aerodynamic design of compressor impellers, shifted to the design of compressor control systems and then moved to general research and development of centrifugal compressors. He has been licensed as a Professional Engineer in both Wisconsin and New York, has been granted 4 patents, and is a recipient of the AGMA Distinguished Service award.

For Related Articles Search
rating
at www.geartechnology.com

For more information, see the Appendix for this paper in its digital version at *www.geartechnology.com/issues/0718/*.

Appendix – Example 1 runs

ISO 6336 2006 Rating, version 2.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided Data Set: 1Page 12017/07/2713:54:24American Gear ManufacturersAssociationGear Rating Suite - GUI Version 3.0.170

** Gear Geometry Error Messages **

42) Note: Zero backlash x factors are not being used for rating. The sum of X1 + X2, -0.1648 does not correspond to the value 0.0000 calculated from the center distance and the pressure angle.

** Velocity Error Messages **

4) WARNING: X-Factors are outside limits for mesh stiffness calculation.

** Load Distribution Error Messages **

5) Note: Mesh misalignment is approximated from gear quality.

**** Durability Factors Error Messages ****

3) Note: Pinion cycles above 1.E10, graph of flank (pitting) life factor extrapolated to 1.9705E11

4) Note: Gear cycles above 1.E10, graph of flank (pitting) life factor extrapolated to 3.7843E10

** Strength Factors Error Messages **

4) Note: Pinion cycles above 1.E10, graph of root (bending) life factor extrapolated to 1.9705E11
13) Note: Gear cycles above 1.E10, graph of root (bending life factor extrapolated to 3.7843E10

	** Gear Geometry (External Gears) **	Pinion	Gear (Whe	<u>el)</u>		
	Gear Set Type	Single Helical				
z	Number of Teeth	29	151			
и	Gear Ratio (Hunting Tooth Set)	5.20)69			
$m_{\rm n}$	Normal Module	5.00	000	mm		
а	Center Distance	18.62	283	inch		
$a_{\rm s}$	Standard Center Distance	18.62	283	inch		
b	Face Width	6.2500	6.2500	inch		
$b_{ m eff}$	Effective Face Width	6.25	500	inch		
n	Speed	18,744.8	3,600.0	rpm		
ν_t	Pitch Line Velocity	29,456	5.3	ft/min		
α_n	Normal Reference Pressure Angle	20.00	000	degrees		
α_{wt}	Transverse Operating Pressure Angle	20.94	119	degrees		
β	Helix Angle	18.00	000	degrees		
β_{w}	Operating Helix Angle	18.00	000	degrees		
h_{t}	Whole depth	0.4887	0.4887	inch		
С	Tip to Root Clearance	0.0950	0.0950	inch		
	Pinion Tip to Gear Root / Gear Tip to Pinion Root					

ISO 6336 2006 Rating, version 2.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided Data Set: 1Page 22017/07/2713:54:24American Gear ManufacturersAssociationGear Rating Suite - GUI Version 3.0.170

	** Diameters **	Pinion	Gear (Whe	el)
d_{a}	Tip Diameter	6.3961	31.648	inch
h_{a}	Addendum	1.0000	1.0000	normalized
d	Reference Pitch Diameter	6.0024	31.254	inch
$d_{ m w}$	Operating (working) Pitch Diameter	6.0024	31.254	inch
d_{SAP}	Start of Active Profile (Minimum)	5.7104	30.932	inch
d_{SOI}	Start of Involute Diameter	5.6625	30.798	inch
d_{b}	Base Diameter	5.6059	29.1896	inch
$d_{ m f}$	Root Diameter	5.4188	30.670	inch
	** Ratios **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
εα	Transverse (Profile) Contact Ratio	1	.6405	
εβ	Axial (Face) Contact Ratio	3	.1230	
εγ	Total Contact Ratio	4	.7635	
$b_{\rm eff}$ / $d_{\rm w}$	Facewidth to Operating Pitch Diameter Ratio	1.0412	0.2000	
$b_{\rm eff}$ /a	Facewidth to Center Distance Ratio	0.3355	0.3355	

** Line of Action Data **

Gear Driving, First Contact Near Gear Root Sliding velocity is for pinion, change sign for gear sliding velocity Point C1 determined by gear tip diameter

	Distance	Pinion	Pinion	Gear	Gear	Sliding	Specific	Specific
	on line	Roll	Diameter	Roll	Diameter	Velocity	Sliding	Sliding
Points on line of action	of action	Angle	inch	Angle	inch	in/sec	Pinion	Gear
C1 Gear End of Active Profile	0.5435	11.1106	5.7104	24.0045	31.648	-1,238.19	-1.1605	0.5371
C2 Gear Highest Point STC	0.9325	19.0616	5.9080	22.4775	31.355	-328.02	-0.1792	0.1520
C3 Working Pitch Point	1.0727	21.9271	6.0024	21.9271	31.254	0.0000	0.0000	0.0000
C4 Gear Lowest Point STC	1.1508	23.5244	6.0601	21.6204	31.199	182.845	0.0809	-0.0881
C5 Gear Start of Active Profile	1.5398	31.4754	6.3961	20.0934	30.932	1,093.01	0.3616	-0.5665
C6 Total Line of Action Length	6.6581 i	nch						

Point C5 determined by Pinion Tip diameter

- Percent Approach Action: 46.89%
- Percent Recess Action: 53.11%

	** Tool Data - Same for Pinion & Gear **	Hob or Rack 7	Type Cutter	
h_{aP}	ISO (1/2 pitch) Tool Addendum (from ref. line)	1.4000		normalized
<i>s</i> ₀	Measured Tool Tooth Thickness	1.5708		normalized
pr	Protuberance of Tool	0.0000		inch
q	Finishing Stock Allowance - Normal	0.0000		inch
r_{T}	Tool Tip Radius	0.3936		normalized
$h_{\mathrm{a}0}$	Hypothetical Tool Addendum	1.4000		normalized
	** Surface Finish **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
$R_{\rm a}$	Flank Roughness, Arithmetic Average	32.000	32.000	micro-inch
$R_{\rm a}$	Root Roughness, Arithmetic Average	64.000	64.000	micro-inch

ISO 6336 2006 Rating, version 2.0031 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided		Data Set: 1Page 32017/07/2713:54:24American Gear Manufacturers AssociationGear Rating Suite - GUI Version 3.0.170		
	** Tooth Thickness **	Pinion	Gear (Whe	ലി)
c	Normal Tip Tooth Thickness	0.1347	0.1499	inch
S _{an}	Normal Tip Tooth Thickness	0.6843	0.7613	normalized
а	Center Distance for Calculation of Zero Backlash (Me			inch
$\Delta x/2$	Thinning for Backlash (on ref. diameter)	0.0600	0.0600	normalized
	Profile Shift Coefficient (Zero Backlash x Factor)	0.0000	0.0000	normalized
x	FIGHTE SHITT COEfficient (Zero Backiash & Factor)	Rating Based on Nomina		
$j_{ m t}$	Transverse Circular Backlash	0.024		inch
	** Configuration Data **	Pinion	Gear (Whe	el)
	Gear Blank Construction	Solid	Solid	<u> </u>
l	Pinion Shaft Bearing Span	8.0000		inch
S	Pinion Offset	0.0000		inch
$d_{ m sh}$	Pinion Shaft External Diameter	3.0000		inch
$d_{ m shi}$	Pinion Shaft Internal Diameter	0.0000		inch
	Tooth Alignment Correction	None		
$\rho_{\rm F}$	Set Arrangement	ISO 6	336-1 figure 1	3 A
	Contact Pattern]	Favorable	
U40	Kinematic Viscosity of Lubricant at 40 C	32.00	0	cSt
C_{a}	Design Tip Modification	0.000	0	0.0001 in
	** ISO Materials **	<u>Pinion</u>	Gear (Whe	el)
	Material	NT: Gas Nitrided Steel		
	Material Sub-class			
	Material Quality	MQ	MQ	
	** Material Hardness **	<u>Pinion</u>	Gear (Whe	el)
	Surface Hardness	90 Rockwell 15N	90 Rockwell	
	Note: Hardness conversions are approximate	<i>y</i> 0 Rook won 1910	yo Roekwen	
		D' '		1)
	** Application Data (Wheel Driving) **	Pinion	Gear (Whe	
n	Speed Design Life	18,744.8	3,600.0	rpm
	Design Life	20.000		years
$N_{ m L}$	Design Life		3.7843E10	cycles
	Contacts per Revolution Idler?	1 No	1 No	
		INO	INO	
	** Life Factor Data * *	<u>Pinion</u>	Gear (Whe	<u>el)</u>
$N_{\rm L}$	Number of Cycles	1.9705E11 3	3.7843E10	
$Z_{\rm N}$	Pitting Durability Stress Cycle Factor (input)	0.0000	0.0000	
$Y_{\rm N}$	Bending Strength Stress Cycle Factor (input)	0.0000	0.0000	
$Z_{\rm N10}$	Pitting Durability Cycle Factor at 10^10	0.8500	0.8500	
$Y_{\rm N10}$	Bending Strength Cycle Factor at 10^10	0.8500	0.8500	
	** Tolerances **	Dinion	Coor (Who	
	ISO 1328-1 Accuracy Grade	<u>Pinion</u> 6.0000	<u>Gear (Whe</u> 6.0000	<u>ci)</u>
	150 1520-1 Accuracy Oracle	0.0000	0.0000	

ISO 6336 2006 Rating, version 2.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided

Data Set: 1 Page 4 2017/07/27 13:54:24 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

** ISO 6336 2006 Rating Output ** Power Rating, Calculate from Safety Factor

	** ISO Factors **		
$K_{\rm A}$	Application Factor	1.4000	
$S_{\rm Hmin}$	Minimum Safety Factor, Durability	1.2000	
$S_{\rm Fmin}$	Minimum Safety Factor, Strength	1.4000	
	Face Load Factor, Strength	Calculated	
	** Dynamic Factor **		
$K_{\rm v}$	Dynamic Factor (Method B)	1.1665	
$m_{\rm red}$	Reduced Mass of Pair	0.0741	lb/in
c'	Max.Single Pair Stiffness	12.6634	lb/(in µin)
Cγα	Mean Value Mesh Stiffness per Unit Face - for K_v	18.7465	lb/(in µin)
$N_{\rm S}$	Resonance Ratio	3.5800	

	** Load Distribution Factor **		
	Tooth Alignment Correction	None	
	Set arrangement	ISO 6336-1 figure 1	3 A
	Contact Pattern	Favorable	
$K_{{ m H}\beta}$	Face Load Factor, flank (Method B)	1.0962	
$K_{\mathrm{F}\beta}$	Face Load Factor, root (Method B)	1.0884	
$K_{\mathrm{H}\alpha}$	Trans.Load Factor, flank (Method B)	1.1332	
$K_{\rm F\alpha}$	Trans Load Factor, root (Method B)	1.1332	
$f_{ m sh0}$	Unit Load Shaft Deflection	0.0249	0.0001 in
$F_{\beta \mathrm{x}}$	Initial Equivalent Misalignment	7.2653	0.0001 in
$F_{\beta \mathrm{y}}$	Effective Equiv Misalignment	6.1755	0.0001 in
$C_{\gamma\beta}$	Mesh stiffness per Unit Face - for $K_{\rm H\beta}$	15.9345	lb/(in µin)

ISO 6336 2006 Rating, version 2.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided

Type of Rating:

Data Set: 1Page 52017/07/2713:54:24American Gear ManufacturersAssociationGear Rating Suite - GUI Version 3.0.170

Power Rating, Calculate from Safety Factor

_	** Surface Durability Rating Factors **	Pinion		Gear (Wheel)
$Z_{ m H}$ $Z_{ m E}$	Zone Factor Elastic Factor		2.3944 189.812	$(lb/in^2)^{1/2}$
Zε Zε	Contact Ratio Factor		0.7808	(10/111.)
Z_{β}	Helix Angle Factor		1.0254	
$Z_{\rm B}$, $Z_{\rm I}$	D Single Pair Tooth Contact Factor	1.0000		1.0000
$Z_{\rm NT}$	Life Factor, static	1.0000		1.0000
	Life Factor, reference	0.8500		0.8500
$Z_{ m L}$	Lubrication Factor, static		1.0000	
	Lubrication Factor, reference		0.9224	
Z_{R}	Roughness Factor, static		1.0000	
	Roughness Factor, reference		0.9833	
$Z_{\rm V}$	Velocity Factor, static		1.0000	
	Velocity Factor, reference		1.0690	
$Z_{ m W}$	Work Hardening Factor, static	1.0000		1.0000
	Work Hardening Factor, reference	1.0000		1.0000
$Z_{\rm X}$	Size Factor		1.0000	
	** Bending Strength Rating Factors **	Pinion		Gear (Wheel)
$Y_{ m F}$	Tooth Form Factor	1.5013		1.2643
$Y_{\rm S}$	Stress Correction Factor	1.7976		2.1428
V	Contact Ratio		0.6686	
$Y_{\rm DT}$	Deep Tooth Factor Rim Thickness Factor	1.0000	1.0000	1.0000
Y_{eta}	Helix Angle Factor	1.0000	0.8500	1.0000
Y _{NT}	Life Factor, static	1.0000		1.0000
- 111	Life Factor, reference	0.8500		0.8500
$Y_{\delta relT}$	Relative Notch Sensitivity Factor, static	0.9595		1.0286
- oterr	Relative Notch Sensitivity Factor, reference	0.9616		0.9989
$Y_{\rm RrelT}$	Relative Surface Factor, static	1.0000		1.0000
	Relative Surface Factor, reference	0.9948		0.9948
$Y_{\rm X}$	Size Factor, static	1.0000		1.0000
	Size Factor, reference	1.0000		1.0000

ISO 6336 2006 Rating, version 2.0031 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided

Data Set: 1	Page 6					
2017/07/27	13:54:24					
American Gear Manufacturers Association						
Gear Rating Suite - GUI Version 3.0.170						

**** MAIN RATING VALUES ****

	** Surface Durability Ratings **	Pinion	Gear (Wh	eel)
σ_{Hlim}	Allowable Stress Number, contact	1,250.00	1,250.00	
σ_{HG}	Pitting Stress Limit, static	1,212.04	1,212.04	
	Pitting Stress Limit, reference	1,030.24	1,030.24	
σ_{HP}	Permissible Contact Stress, static	1,010.03	1,010.03	
	Permissible Contact Stress, reference	858.53	858.53	
σ_{HP}	Permissible contact Stress	811.06	837.00	
σ_{H0}	Nominal Contact Stress		569.43	
$\sigma_{\rm H}$	Contact Stress	811.06	811.06	
$S_{\rm H}$	Durability Safety Factor	1.2000	1.2384	
	** Bending Strength Ratings **	<u>Pinion</u>	Gear (Wh	<u>eel)</u>
σ_{Flim}	Allowable Bending Stress	420.00	420.00	
σ_{FG}	Tooth Root Stress Limit, static	803.52	834.73	
	Tooth Root Stress Limit, reference	682.99	709.52	
σ_{FP}	Permissible Tooth Root Stress, static	573.94	596.23	
	Permissible Tooth Root Stress, reference	487.85	506.80	
σ_{FP}	Permissible Tooth Root Stress	459.57	493.46	
σ_{F0}	Nominal Tooth Root Stress	143.712	144.271	
σ_{F}	Tooth Root Stress	289.480	290.605	
$S_{\rm F}$	Strength Safety Factor	2.2226	2.3773	
	** POWER SUMMARY **	Pinion	Gear (Wh	<u>eel)</u>
F_{t}	Tangential Force		11,179.1	lbf
	Torque	33,551.	174,697.	in-lb
	Power at Specified Safety factor		9,978.7	hp

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided Data Set: 1Page 12017/07/2716:17:52American Gear ManufacturersAssociationGear Rating Suite - GUI Version 3.0.170

** AGMA 6011 Error Messages **

Note: All 6011 warnings also apply to API 613

7) Note, see AGMA 6011 I03 Table 2 for recommended accuracy grades as a function of pitch line velocity

** API 613 Error Messages **

5) Warning, standard violated: Pinion Tooth accuracy must be ISO 1328-1 grade 4 or better

6) Warning, standard violated: Gear Tooth accuracy must be ISO 1328-1 grade 4 or better

	** Gear Geometry (External Gears) ** Gear Set Type	<u>Pinion</u> Single	Gear (When Helical	<u>el)</u>
$N_{\rm P} N_{\rm G}$	Number of Teeth	29	151	
$m_{\rm G}$	Gear Ratio (Hunting Tooth Set)		069	
$m_{\rm n}$	Normal Module	5.0	000	mm
С	Center Distance	18.6	283	inch
U U	Standard Center Distance	18.6		inch
F	Face Width	6.2500	6.2500	inch
F	Effective Face Width	6.2	500	inch
n	Speed	18,744.8	3,600.0	rpm
ν_t	Pitch Line Velocity	29,45	6.3	ft/min
φn	Normal Reference Pressure Angle	20.0	000	degrees
φ _t	Transverse Operating Pressure Angle	20.9	419	degrees
Ψs	Helix Angle	18.0	000	degrees
	Operating Helix Angle	18.0	000	degrees
h_{t}	Whole depth	0.4887	0.4887	inch
С	Tip to Root Clearance	0.0950	0.0950	inch
		Pinion Tip to Gear Ro	oot / Gear Tip to I	Pinion Root
	** Diameters **	Pinion	Gear (Whe	el)
$d_{\rm o} D_{\rm o}$	Tip Diameter	6.3961	31.648	inch
$a_{\rm oP} a_{\rm oC}$	G Addendum	1.0000	1.0000	normalized
D	Reference Pitch Diameter	6.0024	31.254	inch
d	Operating (working) Pitch Diameter	6.0024	31.254	inch
d_{SAP}	Start of Active Profile (Minimum)	5.7104	30.932	inch
	Start of Involute Diameter	5.6625	30.798	inch
D_{b}	Base Diameter	5.6059	29.1896	inch
D_{R}	Root Diameter	5.4188	30.670	inch
	** Ratios **	Pinion	Gear (Whe	el)
$m_{ m p}$	Transverse (Profile) Contact Ratio		405	<u> </u>
$m_{\rm F}$	Axial (Face) Contact Ratio	3.1	.230	
$m_{ m t}$	Total Contact Ratio	4.7	635	
	Facewidth to Operating Pitch Diameter Ratio	1.0412	0.2000	
	Facewidth to Center Distance Ratio	0.3355	0.3355	

FTM F	613 5th Edition Rating Paper Gear Set 1 5 mn a 20 18 helix ed						tion
	** Line of Action Data **						
	Driving, First Contact Near Gear R C1 determined by gear tip diamete		ity is for pi	inion, chang	ge sign for	gear slidir	ng velocity
<u>Points</u>	Distance on line	e Pinion Pinion Roll Diameter Angle inch	Gear Roll Angle 24.0045	Gear Diameter inch 31.648	Sliding Velocity in/sec -1,238.19	Specific Sliding Pinion -1 1605	Specific Sliding Gear 0.5371
	ar Highest Point STC 0.9325		22.4775	31.355	-328.02	-0.1792	0.1520
C3 Wo	orking Pitch Point 1.0727	21.9271 6.0024	21.9271	31.254	0.0000	0.0000	0.0000
	ar Lowest Point STC 1.1508	23.5244 6.0601	21.6204	31.199	182.845	0.0809	-0.0881
	ar Start of Active Profile 1.5398 tal Line of Action Length 6.6581	31.4754 6.3961	20.0934	30.932	1,093.01	0.3616	-0.5665
	at C5 determined by Pinion Tip di						
	cent Approach Action: 46.89%						
Perc	cent Recess Action: 53.11%						
	** Tool Data - Same for I	Pinion & Coar **		Hob or	Rack Typ	e Cutter	
h_{a}	ISO (1/2 pitch) Tool Addendum				.4000	e Cutter	normalized
t _m	Measured Tool Tooth Thickness				.5708		normalized
δ_{a0}	Protuberance of Tool			0	.0000		inch
	Finishing Stock Allowance - N	ormal		0	.0000		inch
r_{T}	Tool Tip Radius				.3936		normalized
$h_{\mathrm{a}0}$	Hypothetical Tool Addendum			1	.4000		normalized
	** Tooth Thickness **		I	Pinion	Ge	ear (Wheel)
to	Normal Tip Tooth Thickness			.1347		.1499	inch
	Normal Tip Tooth Thickness		0	.6843	0	.7613	normalized
С	Center Distance for Calculation		ean)	18	.6283		inch
Δ_{n}	Thinning for Backlash (on ref.	,	0	.0600		.0600	normalized
x	Profile Shift Coefficient (Zero	Backlash x Factor)		.0000		.0000	normalized
B_{t}	Transverse Circular Backlash		Rating Ba		minal (wi .0248	th thinnin	g) Thickness inch
Dt	Hansverse Circular Backlash			0	.0240		men
	** API Materials **		<u>l</u>	Pinion		ear (Wheel	<u>)</u>
	Hast Treatment		N:+-	Mate rided	erial is Stee	el Nitrided	
	Heat Treatment Surface Hardness			0 Rockwell	15N 900		1 15N
	Note: Hardness conversions	are approximate	20.0		1311 30.1	J KUCKWEI	1 1.713
	** Application Data (Whe	el Driving) **	I	Pinion	G	ear (Wheel)
$n_{\rm p}$	Speed	, , , , , , , , , , , , , , , , , , ,	=	744.8		500.0	rpm
q	Contacts per Revolution		/	1	- / ·	1	Ľ
-	Idler?			No		No	

Data Set: 1 Page 3 FTM Paper Gear Set 1 2017/07/27 16:17:52 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided Gear Rating Suite - GUI Version 3.0.170 ** API 613 Data ** Pinion Gear (Wheel) Material Index Number (pitting allowable) $I_{\rm m}$ 300.23 300.23 psi S_a Bending Stress Number (allowable) 27,557.2 27,557.2 psi Type of Rating: **Power Rating, Calculate from Service Factor** SFAPI 613 Service Factor (input) 1.4000 ** AGMA 908 DATA (normalized) ** Gear (Wheel) Pinion K_{f} Stress Correction Factor 1.4277 1.5500 I-Factor Ι 0.2363 JJ-Factor 0.5467 0.6264 **** API 613 RATING OUTPUT **** ** PITTING ** Ka Tooth Pitting Index, allowable 214.449 psi Allowable Power at input Service Factor 6,024.2 hp ** BENDING ** Pinion Gear (Wheel) Allowable Power at input Service Factor 6,903.3 7,909.8 hp **** POWER SUMMARY **** Allowable Power at Input Service Factor 6,024.2 hp

AGMA 6011-I03 Rating, rating engine version 1.0031	Data Set: 1 Page 1	
FTM Paper Gear Set 1	2017/07/27 16:16:18	3
151-29 5 mn a 20 18 helix	American Gear Manufacturers Associatio	n
Nitrided 40,000 Hours	Gear Rating Suite - GUI Version 3.0.170	

Gear Rating Suite - GUI Version 3.0.170

** Strength and Stress Cycle Factor Error Messages **

172) WARNING: Number of cycles exceeds the range defined in the standard, stress cycle factors extrapolated beyond 1E10 cycles

** Effective Case Error Messages **

213) WARNING: Contact stress is not known, case depth as a function of contact stresses is undefined 214) WARNING: Contact stress is not known, core hardness coefficent is undefined

** AGMA 6011 Error Messages **

7) Note, see AGMA 6011 I03 Table 2 for recommended accuracy grades as a function of pitch line velocity

	** Gear Geometry (External Gears) **	<u>Pinion</u>	Gear (Whe	el)
	Gear Set Type	Single 1	Helical	
$N_{\rm P} N_{\rm G}$	Number of Teeth	29	151	
$m_{ m G}$	Gear Ratio (Hunting Tooth Set)	5.20	69	
$m_{\rm n}$	Normal Module	5.00	00	mm
С	Center Distance	18.62	83	inch
	Standard Center Distance	18.62	83	inch
F	Face Width	6.2500	6.2500	inch
F	Effective Face Width	6.25	00	inch
n	Speed	18,744.8	3,600.0	rpm
ν_t	Pitch Line Velocity	29,456	.3	ft/min
ϕ_n	Normal Reference Pressure Angle	20.00	00	degrees
φt	Transverse Operating Pressure Angle	20.94	19	degrees
ψ_s	Helix Angle	18.00	00	degrees
	Operating Helix Angle	18.00	00	degrees
h_{t}	Whole depth	0.4887	0.4887	inch
С	Tip to Root Clearance	0.0950	0.0950	inch
		Pinion Tip to Gear Roo	t / Gear Tip to l	Pinion Root

** Diameters **	Pinion	Gear (Whe	<u>el)</u>
$d_{\rm o} D_{\rm o}$ Tip Diameter	6.3961	31.648	inch
$a_{\rm oP} a_{\rm oG}$ Addendum	1.0000	1.0000	normalized
D Reference Pitch Diameter	6.0024	31.254	inch
d Operating (working) Pitch Diameter	6.0024	31.254	inch
d_{SAP} Start of Active Profile (Minimum)	5.7104	30.932	inch
Start of Involute Diameter	5.6625	30.798	inch
<i>D</i> _b Base Diameter	5.6059	29.1896	inch
$D_{\rm R}$ Root Diameter	5.4188	30.670	inch

AGMA 6011-I03 Rating, rat	ting engine version 1.0031
---------------------------	----------------------------

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided **40,000 Hours** Data Set: 1 Page 2 2017/07/27 16:16:18 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

	** Ratios **	Pinion	Gear (Wheel)
$m_{ m p}$	Transverse (Profile) Contact Ratio	1.640)5
$m_{\rm F}$	Axial (Face) Contact Ratio	3.123	30
$m_{\rm t}$	Total Contact Ratio	4.763	35
	Facewidth to Operating Pitch Diameter Ratio	1.0412	0.2000
	Facewidth to Center Distance Ratio	0.3355	0.3355

** Line of Action Data **

Gear Driving, First Contact Near Gear Root Sliding velocity is for pinion, change sign for gear sliding velocity Point C1 determined by gear tip diameter

	Distance	Pinion	Pinion	Gear	Gear	Sliding	Specific	Specific
	on line	Roll	Diameter	Roll	Diameter	Velocity	Sliding	Sliding
Points on line of action	of action	Angle	inch	Angle	inch	in/sec	Pinion	Gear
C1 Gear End of Active Profile	0.5435	11.1106	5.7104	24.0045	31.648	-1,238.19	-1.1605	0.5371
C2 Gear Highest Point STC	0.9325	19.0616	5.9080	22.4775	31.355	-328.02	-0.1792	0.1520
C3 Working Pitch Point	1.0727	21.9271	6.0024	21.9271	31.254	0.0000	0.0000	0.0000
C4 Gear Lowest Point STC	1.1508	23.5244	6.0601	21.6204	31.199	182.845	0.0809	-0.0881
C5 Gear Start of Active Profile	1.5398	31.4754	6.3961	20.0934	30.932	1,093.01	0.3616	-0.5665
C6 Total Line of Action Length	n 6.6581 i	nch						
Point C5 determined by Pinio	on Tip diai	neter						
Percent Approach Action:	46.89%							

Percent Recess Action: 40.89%

	** Tool Data - Same for Pinion & Gear **	Hob or Rack	Type Cutter	
h_{a}	ISO (1/2 pitch) Tool Addendum (from ref. line)	1.4000		normalized
t _m	Measured Tool Tooth Thickness	1.5708	1	normalized
δ_{a0}	Protuberance of Tool	0.0000	1	inch
	Finishing Stock Allowance - Normal	0.0000	1	inch
r_{T}	Tool Tip Radius	0.3936	;	normalized
$h_{\mathrm{a}0}$	Hypothetical Tool Addendum	1.4000	1	normalized
	** Surface Finish **	Pinion	Gear (Whee	el)
$f_{\rm p}$	Flank Roughness, Arithmetic Average	32.000	32.000	micro-inch
	** Tooth Thickness **	Pinion	Gear (Whee	el)
to	Normal Tip Tooth Thickness	0.1347	0.1499	inch
	Normal Tip Tooth Thickness	0.6843	0.7613	normalized
С	Center Distance for Calculation of Zero Backlash (Mean)	18.6283		inch
Δ_{n}	Thinning for Backlash (on ref. diameter)	0.0600	0.0600	normalized
x	Profile Shift Coefficient (Zero Backlash x Factor)	0.0000	0.0000	normalized
	Rati	ng Based on Nominal	(with thinni	ng) Thickness
B_{t}	Transverse Circular Backlash	0.0248		inch

	** Configuration Data **	Pinion	Gear (Wheel)
	Gear Blank Construction	Solid	Solid
S	Pinion Shaft Bearing Span	8.0000	inch
S_1	Pinion Offset	Not used for 6011	

AGMA 6011-I03 Rating, rating engine version 1.0031 Data Set: 1 Page 3 FTM Paper Gear Set 1 2017/07/27 16:16:18 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided 40,000 Hours Gear Rating Suite - GUI Version 3.0.170

** AGMA Materials **	Pinion	Gear (Whe	<u>el)</u>
Material	Steel	Steel	
Material Sub Class	Nitralloy 135M	Nitralloy	135M
Heat Treatment	Nitrided	Nitrided	
Material Grade	2	2	
Poisson's Ratio	0.3000	0.3000	
Modulus of Elasticity	29,500,000.	29,500,000.	psi
** Material Hardness **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
Surface Hardness	90 Rockwell 15N	N 90 Rockwel	l 15N
Core Hardness	321 Brinell	321 Brinell	
Note: Hardness conversions are approximate			
** Application Data (Wheel Driving) * *	<u>Pinion</u>	Gear (Whe	<u>el)</u>
Speed	18,744.8	3,600.0	rpm
Design Life	40,0	00.	hours
Design Life	4.4988E10	8.6400E09	cycles
Contacts per Revolution	1	1	
Idler?	No	No	
** Tolerances **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
AGMA 2000 Quality Number	Q12	Q12	
	Material Sub Class Heat Treatment Material Grade Poisson's Ratio Modulus of Elasticity ** Material Hardness ** Surface Hardness Core Hardness Note: Hardness conversions are approximate ** Application Data (Wheel Driving) ** Speed Design Life Design Life Contacts per Revolution Idler? ** Tolerances **	MaterialSteelMaterial Sub ClassNitralloy 135MHeat TreatmentNitridedMaterial Grade2Poisson's Ratio0.3000Modulus of Elasticity29,500,000.** Material Hardness **PinionSurface Hardness90 Rockwell 15NCore Hardness321 BrinellNote: Hardness conversions are approximate90 Rockwell 15N** Application Data (Wheel Driving) **PinionSpeed18,744.8Design Life40,0Contacts per Revolution1Idler?No** Tolerances **Pinion	MaterialSteelSteelMaterial Sub ClassNitralloy 135MNitralloyMaterial Sub ClassNitralloy 135MNitralloyMaterial Grade22Poisson's Ratio0.30000.3000Modulus of Elasticity29,500,000.29,500,000.** Material Hardness **PinionGear (WheSurface Hardness90 Rockwell 15N90 RockwellCore Hardness90 Rockwell 15N90 RockwellNote: Hardness conversions are approximate321 Brinell321 Brinell** Application Data (Wheel Driving) **PinionGear (WheSpeed18,744.83,600.0Design Life4.4988E108.6400E09Contacts per Revolution11Idler?NoNo** Tolerances **PinionGear (Whe

** AGMA 6011-I03 Rating Output **

Power Rating, Calculate from Service Factor

	** Effective Case Data **	Pinion	Gear (Whee	<u>el)</u>
$U_{ m c}$	Core Hardness Coefficient	0.0000	0.0000	
	Total Case Depth	0.0000	0.0000	inch
	Figure 15 Heavy Minimum Total Case Depth	0.0237	0.0237	inch
	Figure 15 Normal Minimum Total Case Depth	0.0171	0.0171	inch

** Dynamic Factor **

$K_{\rm v}$	Dynamic Factor (input)	1.1300
A_{v}	Required Transmission Accuracy	A 4

** Load Distribution Factor **

	Intended Service (per std)	Precision Enclosed Gearing
	Leads Properly Modified? (per std)	Yes
	Lapped or Adjusted at Assembly? (per std)	Yes
$C_{ m mc}$	Lead Correction Factor (per std)	0.8000
$C_{ m pf}$	Pinion Proportion Factor	0.1447
$C_{ m pm}$	Pinion Proportion Modifier (per std)	1.0000
C_{ma}	Mesh Alignment Factor	0.1439
C_{e}	Mesh Align Correction Factor (per std)	0.8000
Km	Load Distribution Factor	1.2079

AGMA 6011-I03 Rating, rating engine version 1.0031 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix A Nitrided 40,000 Hours

Data Set: 1 Page 4 2017/07/27 16:16:18 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

	** AGMA 908 DATA (normalized) **	Pinion	Gear (Whe	<u>el)</u>
	Minimum Contact Length	10.	5500	inch
$K_{ m f}$	Stress Correction Factor	1.4277	1.5500	
Ι	I-Factor	0.	2363	
J	J-Factor	0.5467	0.6264	
	** Yield Strength Factors **	Pinion	Gear (Whe	el)
	Application Requirements (for yield strength factor):		trial Practice	<u>((1)</u>
$K_{\rm y}$	Yield Strength Factor	0.7500	0.7500	
$K_{\rm my}$	Load Distribution Factor - Overload	1.	1600	
$W_{\rm max}$	Maximum Tangential Load	11,7	39.8	lbf
Say	Allowable Yield Strength	121,922.	121,922.	psi
,	Yield Strength Safety Factor	5.0849	6.3252	-
	** General Factors **			
Ks	Size Factor	1.	0000	
$K_{\rm T}$	Temperature Factor		0000	
Wt	Tangential Load	11,7		lbf
~	** Pitting Durability Stress Factors Summary **	<u>Pinion</u>	Gear (Whe	<u>eel)</u>
C_{f}	Surface Condition Factor		0000	
$C_{ m G}$	Gear Ratio Factor		8389	
C_{H}	Hardness Ratio Factor		0000	
$C_{\rm p}$	Elastic Coefficient	-	1.44	(lb/in^2)^.5
$Z_{ m N}$	Pitting Durability Stress Cycle Factor	0.6243	0.6848	
	** Bending Strength Stress Factors Summary **	<u>Pinion</u>	Gear (Whe	eel)
$C_{ m H}$	Hardness Ratio Factor		0000	
$K_{\rm B}$	Rim Thickness Factor	1.0000	1.0000	
$Y_{\rm N}$	Bending Strength Stress Cycle Factor	0.7621	0.8038	

AGMA 6011-I03 Rating, rating engine version 1.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided **40,000 Hours**

1	Data Set: 1	Page 5
	2017/07/27	16:16:18
American	Gear Manufacture	rs Association
Gear Ratir	ng Suite - GUI Ver	sion 3.0.170

**** MAIN RATING VALUES ****

** PITTING ** Pinion Gear (Wheel) K Contact Load Factor 373.03 psi Allowable Contact Stress Number 183,000. S_{ac} 183,000. psi Allowable Transmitted Power at Unity Service Factor P_{acu} 14,670.8 17,648.7 hp Service Factor (minimum, input) $C_{\rm SF}$ 1.4000 Allowable Power at Input Service Factor $P_{\rm ac}$ 10,479.1 12,606.2 hp ** BENDING ** Pinion Gear (Wheel) $U_{\rm L}$ Unit Load 9,542.1 psi Allowable Transmitted Power at Unity Service Factor $P_{\rm atu}$ 18,743.6 22,652.5 hp Allowable Bending Stress Number s_{at} 53,180. 53,180. psi Service Factor (minimum, input) $K_{\rm SF}$ 1.4000 Allowable Power at Input Service Factor $P_{\rm at}$ 13,388.3 16,180.4 hp ** POWER SUMMARY ** Pinion Gear (Wheel) $W_{\rm t}$ **Tangential Force** lbf 11,739.8 $T_{\rm P} T_{\rm G}$ Member Torque in-lb 35,234. 183,459. Allowable Power at Input Service Factor P_{a} 10,479.1 hp

AGMA 6011-I03 Rating, rating engine version 1.0031	Data Set: 1
FTM Paper Gear Set 1	2017/07/27
151.20 5 mp a 20 18 halix	American Goor Manufact

American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

Page 1 16:17:10

151-29 5 mn a 20 18 helix Nitrided **175,200 Hours**

** Strength and Stress Cycle Factor Error Messages **

172) WARNING: Number of cycles exceeds the range defined in the standard, stress cycle factors extrapolated beyond 1E10 cycles

** Effective Case Error Messages **

213) WARNING: Contact stress is not known, case depth as a function of contact stresses is undefined 214) WARNING: Contact stress is not known, core hardness coefficient is undefined

** AGMA 6011 Error Messages **

7) Note, see AGMA 6011 I03 Table 2 for recommended accuracy grades as a function of pitch line velocity 18) Note: standard recommends rating at 40,000 hours

	** Gear Geometry (External Gears) **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
	Gear Set Type	Single		
$N_{\rm P} N_{\rm G}$		29	151	
$m_{\rm G}$	Gear Ratio (Hunting Tooth Set)	5.20		
$m_{\rm n}$	Normal Module	5.00	000	mm
С	Center Distance	18.62	283	inch
	Standard Center Distance	18.62	283	inch
F	Face Width	6.2500	6.2500	inch
F	Effective Face Width	6.25	500	inch
n	Speed	18,744.8	3,600.0	rpm
ν_t	Pitch Line Velocity	29,456	5.3	ft/min
ϕ_n	Normal Reference Pressure Angle	20.00	000	degrees
ϕ_t	Transverse Operating Pressure Angle	20.94	119	degrees
ψ_s	Helix Angle	18.00	000	degrees
	Operating Helix Angle	18.00	000	degrees
h_{t}	Whole depth	0.4887	0.4887	inch
С	Tip to Root Clearance	0.0950	0.0950	inch
		Pinion Tip to Gear Roo	ot / Gear Tip to I	Pinion Root
	** Diameters **	Pinion	Gear (Whe	el)
$d_{\rm o} D_{\rm o}$	Tip Diameter	6.3961	31.648	inch
$a_{\rm oP} a_{\rm oC}$	Addendum	1.0000	1.0000	normalized
D	Reference Pitch Diameter	6.0024	31.254	inch
d	Operating (working) Pitch Diameter	6.0024	31.254	inch
d_{SAP}	Start of Active Profile (Minimum)	5.7104	30.932	inch
	Start of Involute Diameter	5.6625	30.798	inch
D_{b}	Base Diameter	5.6059	29.1896	inch
D_{R}	Root Diameter	5.4188	30.670	inch

AGMA 6011-I03 Rat	ing, ratii	ng engine v	version 1.0	031	Data	a Set: 1	Page	2
FTM Paper Gear Set 1	0/	0 0			2017	7/07/27	16:17	
151-29 5 mn a 20 18 helix				Americ	can Gear M	lanufacture	rs Associa	tion
Nitrided 175,200 Hours				Gear R	ating Suite	- GUI Ver	sion 3.0.1	70
					U			
** Ratios **]	Pinion	Ge	ear (Wheel)
$m_{\rm p}$ Transverse (Profile)	Contact F	Ratio			1	.6405		
$m_{\rm F}$ Axial (Face) Contac	et Ratio				3	.1230		
<i>m</i> _t Total Contact Ratio					4	.7635		
Facewidth to Opera	ting Pitch	Diameter I	Ratio	1	.0412	0	.2000	
Facewidth to Center				0	.3355	0	.3355	
** Line of Action	n Data **							
Gear Driving, First Contact Nea			iding veloc	ity is for pi	inion, chan	ge sign for	gear slidin	ng velocity
Point C1 determined by gear tip	o diameter							
	Distance	Pinion	Pinion	Gear	Gear	Sliding	Specific	Specific
	on line	Roll	Diameter	Roll	Diameter	Velocity	Sliding	Sliding
Points on line of action	of action	Angle	inch	Angle	inch	in/sec	Pinion	Gear
C1 Gear End of Active Profile	0.5435	11.1106	5.7104	24.0045	31.648	-1,238.19	-1.1605	0.5371
C2 Gear Highest Point STC	0.9325	19.0616	5.9080	22.4775	31.355	-328.02	-0.1792	0.1520
C3 Working Pitch Point	1.0727	21.9271	6.0024	21.9271	31.254	0.0000	0.0000	0.0000
C4 Gear Lowest Point STC	1.1508	23.5244	6.0601	21.6204	31.199	182.845	0.0809	-0.0881
C5 Gear Start of Active Profile	1.5398	31.4754	6.3961	20.0934	30.932	1,093.01	0.3616	-0.5665
C6 Total Line of Action Length	n 6.6581 i	nch						
Point C5 determined by Pinic	on Tip dia	meter						

Point C5 determined by Pinion Tip diameterPercent Approach Action:46.89%Percent Recess Action:53.11%

	** Tool Data - Same for Pinion & Gear **	Hob or Rack	Type Cutter	
h_{a}	ISO (1/2 pitch) Tool Addendum (from ref. line)	1.4000)	normalized
t _m	Measured Tool Tooth Thickness	1.5708	3	normalized
δ_{a0}	Protuberance of Tool	0.0000)	inch
	Finishing Stock Allowance - Normal	0.0000)	inch
r_{T}	Tool Tip Radius	0.3936	5	normalized
$h_{\mathrm{a}0}$	Hypothetical Tool Addendum	1.4000)	normalized
		D ' '	C (11)	1)
	** Surface Finish **	<u>Pinion</u>	Gear (Whee	
$f_{ m p}$	Flank Roughness, Arithmetic Average	32.000	32.000	micro-inch
	** Tooth Thickness **	Pinion	Gear (Whee	el)
to	Normal Tip Tooth Thickness	0.1347	0.1499	inch
	Normal Tip Tooth Thickness	0.6843	0.7613	normalized
С	Center Distance for Calculation of Zero Backlash (Mean)	18.6283	3	inch
Δ_{n}	Thinning for Backlash (on ref. diameter)	0.0600	0.0600	normalized
x	Profile Shift Coefficient (Zero Backlash x Factor)	0.0000	0.0000	normalized
	Rati	ng Based on Nominal	l (with thinni	ng) Thickness
B_{t}	Transverse Circular Backlash	0.0248	3	inch

** Configuration Data **	<u>Pinion</u> <u>C</u>	Gear (Wheel)
Gear Blank Construction	Solid	Solid
S Pinion Shaft Bearing Span	8.0000	inch
S ₁ Pinion Offset	Not used for 6011	

AGMA 6011-I03 Rating, rating engine version 1.0031 Data Set: 1 Page 3 FTM Paper Gear Set 1 2017/07/27 16:17:10 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided 175,200 Hours Gear Rating Suite - GUI Version 3.0.170 ** AGMA Materials ** Pinion Gear (Wheel)

	AGMA Materials	FIIIOII	Geal (whe	<u>ei)</u>
	Material	Steel	Steel	
	Material Sub Class	Nitralloy 135M	Nitralloy	135M
	Heat Treatment	Nitrided	Nitrided	
	Material Grade	2	2	
μ _P μ _G	Poisson's Ratio	0.3000	0.3000	
$E_{\rm P}~E_{\rm G}$	Modulus of Elasticity	29,500,000.	29,500,000.	psi
	** Material Hardness **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
	Surface Hardness	90 Rockwell 151	N 90 Rockwell	l 15N
	Core Hardness	321 Brinell	321 Brinell	
	Note: Hardness conversions are approximate			
	** Application Data (Wheel Driving) **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
$n_{\rm p}$	Speed	18,744.8	3,600.0	rpm
L	Design Life	175,2	200.	hours
N	Design Life	1.9705E11	3.7843E10	cycles
q	Contacts per Revolution	1	1	
	Idler?	No	No	
	** Tolerances **	<u>Pinion</u>	Gear (Whe	<u>el)</u>
	AGMA 2000 Quality Number	Q12	Q12	

** AGMA 6011-I03 Rating Output **

Power Rating, Calculate from Service Factor

	** Effective Case Data **	Pinion	Gear (Whee	<u>el)</u>
$U_{ m c}$	Core Hardness Coefficient	0.0000	0.0000	
	Total Case Depth	0.0000	0.0000	inch
	Figure 15 Heavy Minimum Total Case Depth	0.0237	0.0237	inch
	Figure 15 Normal Minimum Total Case Depth	0.0171	0.0171	inch

** Dynamic Factor **

$K_{ m v}$	Dynamic Factor (input)	1.1300
$A_{\rm v}$	Required Transmission Accuracy	A 4

** Load Distribution Factor **

	Intended Service (per std)	Precision Enclosed Gearing
	Leads Properly Modified? (per std)	Yes
	Lapped or Adjusted at Assembly? (per std)	Yes
$C_{ m mc}$	Lead Correction Factor (per std)	0.8000
$C_{ m pf}$	Pinion Proportion Factor	0.1447
$C_{ m pm}$	Pinion Proportion Modifier (per std)	1.0000
$C_{ m ma}$	Mesh Alignment Factor	0.1439
$C_{ m e}$	Mesh Align Correction Factor (per std)	0.8000
$K_{\rm m}$	Load Distribution Factor	1.2079

AGMA 6011-I03 Rating	, rating engine version 1.0031
----------------------	--------------------------------

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided **175,200 Hours**

Data Set: 1 Page 4 2017/07/27 16:17:10 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

	** AGMA 908 DATA (normalized) **	Pinion	Gear (Whe	<u>eel)</u>
	Minimum Contact Length	10.	5500	inch
$K_{ m f}$	Stress Correction Factor	1.4277	1.5500	
Ι	I-Factor	0.	2363	
J	J-Factor	0.5467	0.6264	
	** Yield Strength Factors **	Pinion	Gear (Whe	ael)
	Application Requirements (for yield strength factor):		strial Practice	<u>, (1)</u>
$K_{\rm v}$	Yield Strength Factor	0.7500	0.7500	
$K_{\rm my}$	Load Distribution Factor - Overload		1600	
$W_{\rm max}$	Maximum Tangential Load		949.8	lbf
Say	Allowable Yield Strength	121,922.	121,922.	psi
	Yield Strength Safety Factor	5.9998	7.4632	I
	** General Factors **			
$K_{\rm s}$	Size Factor		0000	
K_{T}	Temperature Factor	1.	0000	
$W_{ m t}$	Tangential Load	9,9	949.8	lbf
	** Pitting Durability Stress Factors Summary **	Pinion	Gear (Whe	eel)
$C_{ m f}$	Surface Condition Factor	1.	.0000	
$C_{ m G}$	Gear Ratio Factor	0.	8389	
$C_{ m H}$	Hardness Ratio Factor	1.	0000	
$C_{\rm p}$	Elastic Coefficient	2,27	71.44	(lb/in^2)^.5
$Z_{\rm N}$	Pitting Durability Stress Cycle Factor	0.5748	0.6304	
	** Don Jin - Chuon -th Chuon Footons Commons **	Dinian	Coor (Who	-1)
C	** Bending Strength Stress Factors Summary ** Hardness Ratio Factor	Pinion 1	Gear (Whe	<u>eer)</u>
$C_{ m H} \ K_{ m B}$	Rim Thickness Factor		.0000	
		1.0000	1.0000	
$Y_{\rm N}$	Bending Strength Stress Cycle Factor	0.7265	0.7663	

AGMA 6011-I03 Rating, rating engine version 1.0031

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided **175,200 Hours**

Data Set: 1	Page 5
2017/07/27	16:17:10
merican Gear Manufacturers	Association
ear Rating Suite - GUI Versi	on 3.0.170

**** MAIN RATING VALUES ****

** PITTING ** Pinion Gear (Wheel) K Contact Load Factor 316.16 psi Allowable Contact Stress Number 183,000. S_{ac} 183,000. psi Allowable Transmitted Power at Unity Service Factor P_{acu} 12,433.8 14,957.7 hp Service Factor (minimum, input) $C_{\rm SF}$ 1.4000 $P_{\rm ac}$ Allowable Power at Input Service Factor 8,881.3 10,684.1 hp ** BENDING ** Pinion Gear (Wheel) $U_{\rm L}$ Unit Load 8,087.2 psi Allowable Transmitted Power at Unity Service Factor $P_{\rm atu}$ 17,870.0 21,596.9 hp Allowable Bending Stress Number s_{at} 53,180. 53,180. psi Service Factor (minimum, input) $K_{\rm SF}$ 1.4000 Allowable Power at Input Service Factor $P_{\rm at}$ 12,764.3 15,426.3 hp ** POWER SUMMARY ** Pinion Gear (Wheel) $W_{\rm t}$ **Tangential Force** lbf 9,949.8 $T_{\rm P} T_{\rm G}$ Member Torque in-lb 29,861.5 155,486. Allowable Power at Input Service Factor P_{a} 8,881.3 hp

A

G

AGMA	200	1-D04	Rating, rating engine version 1.0031
TTN (D	0	G . 1	

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided

Page 1 2017/07/27 16:15:24 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

Data Set: 1

** Dynamic Factor Error Messages **

58) Note: Dynamic Factor (1.1100) set per maximum (most consertive) value for 'very accurate gearing' in figure 1.

** Strength and Stress Cycle Factor Error Messages **

172) WARNING: Number of cycles exceeds the range defined in the standard, stress cycle factors extrapolated beyond 1E10 cycles

** Effective Case Error Messages **

213) WARNING: Contact stress is not known, case depth as a function of contact stresses is undefined

214) WARNING: Contact stress is not known, core hardness coefficent is undefined

	** Gear Geometry (External Gears) **	Pinion	Gear (Whe	el)
	Gear Set Type	Single Helical		
$N_{\rm P} N_{\rm G}$	Number of Teeth	29	151	
$m_{\rm G}$	Gear Ratio (Hunting Tooth Set)	5.20	69	
m _n	Normal Module	5.00	00	mm
С	Center Distance	18.62	83	inch
	Standard Center Distance	18.62	83	inch
F	Face Width	6.2500	6.2500	inch
F	Effective Face Width	6.25	00	inch
n	Speed	18,744.8	3,600.0	rpm
ν_t	Pitch Line Velocity	29,456	.3	ft/min
φn	Normal Reference Pressure Angle	20.00	00	degrees
φt	Transverse Operating Pressure Angle	20.94	19	degrees
ψ_s	Helix Angle	18.00	00	degrees
	Operating Helix Angle	18.00	00	degrees
$h_{ m t}$	Whole depth	0.4887	0.4887	inch
С	Tip to Root Clearance	0.0950	0.0950	inch
		Pinion Tip to Gear Roo	t / Gear Tip to I	Pinion Root

** Diameters **	Pinion	Gear (Whe	el)
$d_{\rm o} D_{\rm o}$ Tip Diameter	6.3961	31.648	inch
$a_{\rm oP} a_{\rm oG}$ Addendum	1.0000	1.0000	normalized
D Reference Pitch Diameter	6.0024	31.254	inch
d Operating (working) Pitch Diameter	6.0024	31.254	inch
d_{SAP} Start of Active Profile (Minimum)	5.7104	30.932	inch
Start of Involute Diameter	5.6625	30.798	inch
D _b Base Diameter	5.6059	29.1896	inch
$D_{\rm R}$ Root Diameter	5.4188	30.670	inch

ACMA 2001 D04 Doting		
AGMA 2001-D04 Rating, rating engine version 1.		-
FTM Paper Gear Set 1		15:24
151-29 5 mn a 20 18 helix Nitrided	American Gear Manufacturers Assoc	
Milliaea	Gear Rating Suite - GUI Version 3.0	.170
** Ratios **	Pinion Gear (Whe	eel)
<i>m</i> _p Transverse (Profile) Contact Ratio	1.6405	
$m_{\rm F}$ Axial (Face) Contact Ratio	3.1230	
<i>m</i> t Total Contact Ratio	4.7635	
Facewidth to Operating Pitch Diameter Ratio	1.0412 0.2000	
Facewidth to Center Distance Ratio	0.3355 0.3355	
** Line of Action Data **		
Gear Driving, First Contact Near Gear Root Sliding veloc	city is for pinion, change sign for gear sli	ding velocity
Point C1 determined by gear tip diameter		0
Distance Pinion Pinion	Gear Gear Sliding Specifi	c Specific
on line Roll Diameter		
Points on line of action of action Angle inch	Angle inch in/sec Pinion	Gear
C1 Gear End of Active Profile 0.5435 11.1106 5.7104	,	
C2 Gear Highest Point STC 0.9325 19.0616 5.9080	22.4775 31.355 -328.02 -0.179	
C3 Working Pitch Point 1.0727 21.9271 6.0024	21.9271 31.254 0.0000 0.000	
C4 Gear Lowest Point STC 1.1508 23.5244 6.0601	21.6204 31.199 182.845 0.080	
C5 Gear Start of Active Profile 1.5398 31.4754 6.3961	20.0934 30.932 1,093.01 0.361	6 -0.5665
C6 Total Line of Action Length 6.6581 inch		
Point C5 determined by Pinion Tip diameter Percent Approach Action: 46.89%		
Percent Recess Action: 53.11%		
** Tool Data - Same for Pinion & Gear **	Hob or Rack Type Cutter	
$h_{\rm a}$ ISO (1/2 pitch) Tool Addendum (from ref. line)	1.4000	normalized
<i>t</i> _m Measured Tool Tooth Thickness	1.5708	normalized
δ_{a0} Protuberance of Tool	0.0000	inch
Finishing Stock Allowance - Normal	0.0000	inch
$r_{\rm T}$ Tool Tip Radius	0.3936	normalized
h_{a0} Hypothetical Tool Addendum	1.4000	normalized
** Surface Finish **	Pinion Gear (Whe	eel)
$f_{\rm p}$ Flank Roughness, Arithmetic Average	32.000 32.000	micro-inch
** Tooth Thickness **	Pinion Gear (Whe	eel)
t _o Normal Tip Tooth Thickness	0.1347 0.1499	inch
Normal Tip Tooth Thickness	0.6843 0.7613	normalized
C Center Distance for Calculation of Zero Backlash (M		inch
Δ_n Thinning for Backlash (on ref. diameter)	0.0600 0.0600	normalized
<i>x</i> Profile Shift Coefficient (Zero Backlash <i>x</i> Factor)	0.0000 0.0000	normalized
	Rating Based on Nominal (with thinn	ing) Thickness
		- 1

B_{t}	Transverse Circular Backlash	0.0	248 inch
	** Configuration Data * *	Pinion	Gear (Wheel)
	Gear Blank Construction	Solid	Solid
S	Pinion Shaft Bearing Span	8.0000	inch
S_1	Pinion Offset	0.0000	inch

AGMA 2001-D04 Rating, rating engine version 1.0031 Data Set: 1 Page 3 FTM Paper Gear Set 1 2017/07/27 16:15:24 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided Gear Rating Suite - GUI Version 3.0.170 ** AGMA Materials ** Gear (Wheel) Pinion Steel Steel Material

			51001	
	Material Sub Class	Nitralloy 135M	Nitralloy 1	35M
	Heat Treatment	Nitrided	Nitrided	
	Material Grade	2	2	
μ _P μ _G	Poisson's Ratio	0.3000	0.3000	
$E_{\rm P}~E_{\rm G}$	Modulus of Elasticity	29,500,000.	29,500,000.	psi
	** Material Hardness **	<u>Pinion</u>	Gear (Whee	el)
	Surface Hardness	90 Rockwell 15		
	Core Hardness	321 Brinell	321 Brinell	
	Note: Hardness conversions are approximate			
	** Application Data (Wheel Driving) **	Pinion	Gear (Whee	<u>el)</u>
np	Speed	18,744.8	3,600.0	rpm
L	Design Life	20.	. 0000	years
N	Design Life	1.9705E11	3.7843E10	cycles
q	Contacts per Revolution	1	1	
	Idler?	No	No	
	** Life Factor Data **	<u>Pinion</u>	Gear (Whee	<u>el)</u>
	Number of Cycles	1.9705E11	3.7843E10	
$Z_{\rm N}$	Pitting Durability Stress Cycle Factor (input)	0.0000	0.0000	
$Y_{\rm N}$	Bending Strength Stress Cycle Factor (input)	0.0000	0.0000	
	Pitting Durability Cycle Factor at 10 ¹⁰	0.6792	0.6792	
	Bending Strength Cycle Factor at 10 ¹⁰	0.8000	0.8000	
	** Tolerances **	Pinion	Gear (Whee	el)
	AGMA 2000 Quality Number	Q12	Q12	

** AGMA 2001-D04 Rating Output **

Power Rating, Calculate from Service Factor

	** Effective Case Data **	Pinion	Gear (Whe	<u>el)</u>
$U_{ m c}$	Core Hardness Coefficient	0.0000	0.0000	
	Total Case Depth	0.0000	0.0000	inch
	Figure 15 Heavy Minimum Total Case Depth	0.0237	0.0237	inch
	Figure 15 Normal Minimum Total Case Depth	0.0171	0.0171	inch
	** Dynamic Factor **			
$V_{ m p}$	Pitch Variation (input)	2.0866	2.7559	0.0001 in
$A_{\rm v}$	Transmission Accuracy Number	5.00	000	
$K_{ m v}$	Dynamic Factor	1.11	L00	

AGMA 2001-D04 Rating, rating engine version 1.003 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix		31 Data Set: 1 2017/07/27 American Gear Manufact	
Nitride		Gear Rating Suite - GUI	
	** Load Distribution Factor **	-	
	Intended Service (input)		nclosed Gearing
	Leads Properly Modified? (input)	No No	
$C_{\rm mc}$	Lapped or Adjusted at Assembly? (input) Lead Correction Factor (input)	1.0000	
$C_{\rm mc}$ $C_{\rm pf}$	Pinion Proportion Factor	0.1447	
$C_{\rm pr}$	Pinion Proportion Modifier (input)	1.0000	
$C_{\rm ma}$	Mesh Alignment Factor	0.1439	
$C_{\rm e}$	Mesh Align Correction Factor (input)	1.0000	
K _m	Load Distribution Factor	1.2886	
		1.2000	
	** AGMA 908 DATA (normalized) **	<u>Pinion</u>	Gear (Wheel)
	Minimum Contact Length	10.5500	inch
K_{f}	Stress Correction Factor	1.4277	1.5500
Ι	I-Factor	0.2363	
J	J-Factor	0.5467	0.6264
	** Yield Strength Factors **	Pinion	Gear (Wheel)
	Application Requirements (for yield strength factor):	Industrial P	
$K_{\rm y}$	Yield Strength Factor	0.7500	0.7500
$K_{\rm my}$	Load Distribution Factor - Overload	1.1600	
$W_{\rm max}$	Maximum Tangential Load	9,494.6	lbf
	Stress due to Wmax	14,543.7 1	1,691.8 psi
Say	Allowable Yield Strength	121,922. 1	.21,922. psi
	Yield Strength Safety Factor	6.2874	7.8210
	** General Factors **		
$K_{\rm s}$	Size Factor	1.0000	
K_{T}	Temperature Factor	1.0000	
W_{t}	Tangential Load	9,494.6	lbf
	** Pitting Durability Stress Factors Summary **	• Pinion	Gear (Wheel)
$C_{ m f}$	Surface Condition Factor	1.0000	
$C_{\rm G}$	Gear Ratio Factor	0.8389	
$C_{ m H}$	Hardness Ratio Factor	1.0000	
$C_{\rm p}$	Elastic Coefficient	2,271.44	(lb/in^2)^.5
$Z_{\rm N}$	Pitting Durability Stress Cycle Factor	0.5748	0.6304
	** Bending Strength Stress Factors Summary **	Dinion	Gaar (Whaal)
$C_{ m H}$	Hardness Ratio Factor	• <u>Pinion</u> 1.0000	Gear (Wheel)
$K_{\rm B}$	Rim Thickness Factor	1.0000	1.0000
$X_{\rm B}$ $Y_{\rm N}$	Bending Strength Stress Cycle Factor	0.7265	0.7663
IN	Denang Suengui Suess Cycle I deloi	0.1203	0.7005

AGMA 2001-D04 Rating, rating engine version 1.0031 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix A

Nitrided

31	Data Set: 1	Page 5				
	2017/07/27	16:15:24				
American Gear Manufacturers Association						
Gear Rati	ng Suite - GUI Ver	sion 3.0.170				

**** MAIN RATING VALUES ****

	** PITTING **	Pinion	Gear (Whe	eel)
Κ	Contact Load Factor		301.69	psi
Sac	Allowable Contact Stress Number	183,000.	183,000.	psi
$P_{\rm acu}$	Allowable Transmitted Power at Unity Service Factor	11,865.1	14,273.4	hp
$C_{\rm SF}$	Service Factor (minimum, input)		1.4000	
$P_{\rm ac}$	Allowable Power at Input Service Factor	8,475.1	10,195.3	hp
	** BENDING **	Pinion	Gear (Whe	eel)
$U_{ m L}$	Unit Load		7,717.2	psi
$P_{\rm atu}$	Allowable Transmitted Power at Unity Service Factor	17,052.1	20,608.3	hp
S _{at}	Allowable Bending Stress Number	53,180.	53,180.	psi
$K_{\rm SF}$	Service Factor (minimum, input)		1.4000	
$P_{\rm at}$	Allowable Power at Input Service Factor	12,180.1	14,720.2	hp
	** POWER SUMMARY **	Pinion	Gear (Whe	eel)
W_{t}	Tangential Force		9,494.6	lbf
$T_{\rm P}$ $T_{\rm G}$	Member Torque	28,495.5	148,373.	in-lb
P_{a}	Allowable Power at Input Service Factor		8,475.1	hp

API 617 Seventh edition chapter 3, rating engine v. 1.0031 Data Set: 1 Page 1 FTM Paper Gear Set 1 2017/07/27 16:18:30 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided

Gear Rating Suite - GUI Version 3.0.170

** Effective Case Error Messages **

 D_{b}

 $D_{\rm R}$

Base Diameter

Root Diameter

213) WARNING: Contact stress is not known, case depth as a function of contact stresses is undefined 214) WARNING: Contact stress is not known, core hardness coefficent is undefined

	** Gear Geometry (External Gears) **	Pinion	Gear (Whe	<u>el)</u>		
	Gear Set Type	Single				
$N_{\rm P} N_{\rm G}$	Number of Teeth	29	151			
$m_{\rm G}$	Gear Ratio (Hunting Tooth Set)	5.20	069			
$m_{ m n}$	Normal Module	5.00	000	mm		
С	Center Distance	18.62	283	inch		
	Standard Center Distance	18.62	283	inch		
F	Face Width	6.2500	6.2500	inch		
F	Effective Face Width	6.25	500	inch		
n	Speed	18,744.8	3,600.0	rpm		
ν_t	Pitch Line Velocity	29,456	5.3	ft/min		
фn	Normal Reference Pressure Angle	20.00	000	degrees		
φt	Transverse Operating Pressure Angle	20.94	419	degrees		
Ψs	Helix Angle	18.00	000	degrees		
·	Operating Helix Angle	18.00	000	degrees		
$h_{ m t}$	Whole depth	0.4887	0.4887	inch		
С	Tip to Root Clearance	0.0950	0.0950	inch		
		Pinion Tip to Gear Root / Gear Tip to Pinion Root				
	** Diameters **	Pinion	Gear (Whe	el)		
$d_{\rm o} D_{\rm o}$	Tip Diameter	6.3961	31.648	inch		
	G Addendum	1.0000	1.0000	normalized		
D	Reference Pitch Diameter	6.0024	31.254	inch		
d	Operating (working) Pitch Diameter	6.0024	31.254	inch		
d_{SAP}	Start of Active Profile (Minimum)	5.7104	30.932	inch		
	Start of Involute Diameter	5.6625	30.798	inch		

5.6059

5.4188

29.1896

30.670

inch

inch

$ \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$	API 617 Seventh edition chapter FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided	3, rating eng	Americ				3:30 ation	
m_r m_1Axial (Face) Contact Ratio3.1230m_1Total Contact Ratio4.7635Facewidth to Operating Pitch Diameter Ratio1.04120.2000** Line of Action Data **Gear Driving, First Contact Near Gear RotoIsling velocity is for pinsonDistance Ratio0.33550.3355** Line of Action Data **Gear Driving, First Contact Near Gear RotBialing velocity is for pinsonDistance PinionPinionGearSliding Point I: defauterSliding Velocity Sliding SlidingPoint Cl defaute Profite0.543511.10165.71044.004531.648-1.238.190.00000.0000C2 Gear Highest Point Ti0.012721.927131.9240.00000.0000C3 Gear Start of Active Profite1.47546.39612.00000.00000.0000**Tool Data - Same for Pinion Tip diameterPercent Acciose Action:6.39610.00000.0000**Tool Data - Same for Pinion Tip diameter1.4000normalized**Tool Data - Same for Pinion Tip diameter1.4000normalized <td c<="" td=""><td>** Ratios **</td><td></td><td>]</td><td>Pinion</td><td>Ge</td><td>ear (Whee</td><td><u>l)</u></td></td>	<td>** Ratios **</td> <td></td> <td>]</td> <td>Pinion</td> <td>Ge</td> <td>ear (Whee</td> <td><u>l)</u></td>	** Ratios **]	Pinion	Ge	ear (Whee	<u>l)</u>
m1 Total Contact Ratio 4.7635 Facewidth to Operating Pitch Diameter Ratio 1.0412 0.2000 Facewidth to Operating Pitch Diameter Ratio 1.0412 0.2000 ** Line of Action Data ** Gear Driving, First Contact Near Gear Rot Sliding velocity is for pinnon, charge sign for gear sliding Distance Pinion Gear Gear Sliding Specific S	1			1	.6405			
Facewidth to Operating Pitch Diameter Ratio1.04120.2000Facewidth to Center Distance Ratio1.04120.2000** Line of Action Data **Gear Driving, First Contact Near Gear RootSliding velocity is for pinion, change sign for gear sliding velocityDistance PrinonGearSlidingSpecificDistance PrinonGearSlidingSpecificSpecificDistance PrinonGearSlidingSpecificSpecificDistance PrinonGearSlidingSpecificSpecificOn to device Profile0.543511.106S.71042.00053.1648-1.202Car Highest Point T0.72720.1520Car Highest Point TC0.32523.12540.00000.0000Car Highest Point STC1.15083.147546.00242.19.2713.12540.00000.0000Car Highest Point STC1.350Car Highest Point STC1.3503.14754A.0000onormalized* Tool Data - Same for Plaino & Gear* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
** Line of Action Data **Sliding velocity is for pinion, charge sign for pin		er Ratio						
Gear Driving, First Contact Near Gear RottSliding velocity is for pinion, change sign for gear sliding velocityPoints on line of actionOn line of actionAngleSlidingClarear End of Active Profile0.102721.927131.620431.198SlidingSlidingSlidingSlidingSlidingSlidingSlidingSlidingSlidingSlidingSlidingSlidingSliding </td <td>Facewidth to Center Distance Ratio</td> <td></td> <td>0</td> <td>.3355</td> <td>0</td> <td>.3355</td> <td></td>	Facewidth to Center Distance Ratio		0	.3355	0	.3355		
$\begin{split} & \text{ on line } \ \ of action \\ Of action A agle \\ S = N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Gear Driving, First Contact Near Gear Root	Sliding veloc	ity is for pi	inion, chan	ge sign for	gear slidi	ng velocity	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0			
$ \begin{array}{c} \hline \text{C1 Gear End of Active Profile 0.5435 11.1106 5.7104 24.0045 31.648 -1,238.19 -1.1605 0.5371 \\ \text{C2 Gear Highest Point STC 0.9325 19.0616 5.9080 22.4775 31.325 -328.02 -0.1792 0.1520 \\ \text{C3 Working Pitch Point 1.077 21.9271 6.0224 21.9271 31.254 0.0000 0.0000 0.0000 \\ \text{C4 Gear Lowest Point STC 1.1508 23.5244 6.0601 21.6204 31.199 182.845 0.0809 -0.0881 \\ \text{C5 Gear Start of Active Profile 1.5398 31.4754 6.3961 20.0934 30.932 1,093.01 0.3616 -0.5665 \\ \text{C6 Total Line of Action Length 6.6581 inch Point C5 determined by Pinion Tip diameter Percent Approach Action: 46.89% \\ \text{Percent Recess Action: 53.11%} \\ \hline \\ $					•			
C2 Gear Highest Point STC 0.9325 19.0616 5.9080 22.4775 31.355 -328.02 -0.1792 0.1520 C3 Working Pitch Point 1.0727 21.9271 6.0024 21.9271 31.254 0.0000 0.0000 0.0000 C4 Gear Lowest Point STC 1.1508 23.5244 6.0601 21.6204 31.199 182.845 0.0809 -0.0881 C5 Gear Start of Active Profile 1.5398 31.4754 6.3961 20.0934 30.932 1,093.01 0.3616 -0.5665 C6 Total Line of Action Length 6.6581 inch Point C5 determined by Pinion Tip diameter Percent Recess Action: 53.11% 0.3000 normalized ** Tool Data - Same for Pinion & Gear ** Hob or Rack Type Cutter normalized normalized 0.0000 inch h_a ISO (1/2 pitch) Tool Addendum (from ref. line) 1.4000 normalized 0.0000 inch r_T Tool Tip Radius 0.3936 normalized 0.3936 normalized h_{a0} Hypothetical Tool Addendum 0.1347 0.1499 inch f_p Flank Roughness, Arithmetic Average								
C3 Working Pitch Point 1.0727 21.9271 6.0024 21.9271 31.254 0.0000 0.0000 0.0000 C4 Gear Lowest Point STC 1.1508 23.5244 6.0601 21.6204 31.199 182.845 0.0809 -0.0881 C5 Gear Start of Active Profile 1.5398 31.4754 6.3961 20.0934 30.932 $1.093.01$ 0.3616 -0.5665 C6 Total Line of Action Length 6.6581 inch Percent Approach Action: 53.11% $strest content approach Action: 53.11\% ** Tool Data - Same for Pinion & Gear ** Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line) 1.4000 normalized m Measured Tool Tooth Thickness 1.5708 normalized h_a0 Protuberance of Tool 0.0000 inch F_1 Tool Tip Radius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 0.3936 normalized f_p Flank Roughness, Arithmetic Average 32.000 32.000 micro-inch f_p Flank Roughness, Arithmetic Average $								
C4 Gear Lowest Point STC1.150823.52446.060121.620431.199182.8450.0809-0.0881C5 Gear Start of Active Profile1.539831.47546.396120.093430.9321.093.010.3616-0.5665C6 Total Line of Action Length6.6581 inchnormalized0.0809-0.0881-0.5665Point C5 determined by Pinion Tip diameterPercent Approach Action:46.89%Percent Recess Action:53.11%1.4000normalized t_m Measured Tool Tooth Thickness1.5708normalized t_m Measured Tool Tooth Thickness0.0000inch F_{11} Tool Tip Radius0.3036normalized h_{a0} Hypothetical Tool Addendum0.0000inch t_p Flank Roughness, Arithmetic Average32.00032.000** Tooth Thickness ** t_o Normal Tip Tooth Thickness h_{a0} Normal Tip Tooth Thickness0.1347 h_{a0} Normal Tip Tooth Thickness0.68430.7613 h_{a0} Tip Tooth Thickness0.68430.7613 h_{a0} Thinning for Backlash (on ref. diameter)0.06000.0600 h_{a0} Tip Tooth Thickness0.0248inch t_p Flank Roughness, Arithmetic Average0.68430.7613 h_{a0} Normal Tip Tooth Thickness0.02600normalized t_p Flank Roughness, Arithmetic Average0.06000.0600 t_p Normal Tip Tooth Thi								
C5 Gear Start of Active Profile 1.5398 31.4754 6.3961 20.0934 30.932 $1.093.01$ 0.3616 -0.5665 C6 Total Line of Action Length 6.6581 inchPoint C5 determined by Pinion Tip diameterPercent Approach Action: 46.89% Percent Recess Action: 53.11% ** Tool Data - Same for Pinion & Gear **Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line) 1.4000 normalized t_m Measured Tool Tooth Thickness 1.5708 normalized δ_{a0} Protuberance of Tool 0.0000 inchFinishing Stock Allowance - Normal 0.0000 inch r_T Tool Tip Adius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 1.4000 normalized f_p Flank Roughness, Arithmetic Average 32.000 32.000 f_p Flank Roughness, Arithmetic Average 0.1347 0.1499 f_o Normal Tip Tooth Thickness 0.6843 0.7613 Normal Tip Tooth Thickness 0.6643 0.7613 normalized A_n Thinning for Backlash (on ref. diameter) 0.0600 0.0000 normalized A_n Thinning for Backlash (on ref. diameter) 0.0248 inch A_n Transverse Circular Backlash $Normal Tip Tooth Thickness0.0248B_1Transverse Circular BacklashNormal Tip Tooth Thickness0.0248A_nThinning for Backlash (on ref. diameter)0.0248inchA_nThinning Shif$								
Point C5 determined by Pinion Tip diameter Percent Approach Action: 46.89% Percent Recess Action: 53.11%** Tool Data - Same for Pinion & Gear **Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line)1.4000normalized normalized 1.5708 t_m Measured Tool Tooth Thickness1.5708normalized normalized δ_{a0} Protuberance of Tool0.0000inch mormalized r_T Tool Tip Radius0.3936normalized h_{a0} Hypothetical Tool Addendum1.4000normalized h_{a0} Hypothetical Tool Addendum1.4000inch r_T Tool Tip Radius0.3936normalized h_{a0} Hypothetical Tool Addendum1.4000normalized f_p Flank Roughness, Arithmetic Average32.000Gear (Wheel) f_o Normal Tip Tooth Thickness0.13470.1499 r_0 Center Distance for Calculation of Zero Backlash (Mean)18.6283inch A_n Thinning for Backlash (on ref. diameter)0.06000.06000.0600normalized r_0 Center Distance for Calculation of Zero Backlash (Mean)18.6283inch A_n Thinning for Backlash (on ref. diameter) <th c<="" td=""><td>C5 Gear Start of Active Profile 1.5398 31.47</td><td>6.3961</td><td></td><td></td><td></td><td>0.3616</td><td>-0.5665</td></th>	<td>C5 Gear Start of Active Profile 1.5398 31.47</td> <td>6.3961</td> <td></td> <td></td> <td></td> <td>0.3616</td> <td>-0.5665</td>	C5 Gear Start of Active Profile 1.5398 31.47	6.3961				0.3616	-0.5665
Percent Approach Action:46.89% Percent Recess Action:53.11%** Tool Data - Same for Pinion & Gear **Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line)1.4000normalized t_m Measured Tool Tooth Thickness1.5708normalized δ_{a0} Protuberance of Tool0.0000inch $Finishing Stock Allowance - Normal0.0000inchr_TTool Tip Radius0.3936normalizedh_{a0}Hypothetical Tool Addendum1.4000normalizedf_pFlank Roughness, Arithmetic AveragePinion32.000Gear (Wheel)32.000micro-inch** Tooth Thickness **PinionO.1347Gear (Wheel)0.1499incht_oNormal Tip Tooth Thickness0.68430.7613normalizedA_nThinning for Backlash (on ref. diameter)0.06000.0600normalizedA_nThinning for Backlash (on ref. diameter)0.06000.0600normalizedRating Based on NominalWith thinning) ThicknessB1Transverse Circular Backlash0.0248inch** Configuration Data **PinionSolidGear (Wheel)SolidSolidSolidSuCare Blank ConstructionSolidSolidSolid$								
Percent Recess Action: 53.11% ** Tool Data - Same for Pinion & Gear **Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line) 1.4000 normalized m Measured Tool Tooth Thickness 1.5708 normalized δ_{a0} Protuberance of Tool 0.0000 inchFinishing Stock Allowance - Normal 0.0000 inch r_T Tool Tip Radius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 1.4000 normalized r_T Tool Tip Radius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 1.4000 normalized f_p Flank Roughness, Arithmetic AveragePinionGear (Wheel) f_p Flank Roughness, Arithmetic Average 32.000 micro-inch t_o Normal Tip Tooth Thickness **PinionGear (Wheel) $Normal Tip Tooth Thickness0.13470.1499inchNormal Tip Tooth Thickness0.668430.7613normalizedCCenter Distance for Calculation of Zero Backlash (Mean)18.6283inch\Delta_nThinning for Backlash (on ref. diameter)0.06000.0000normalizedxProfile Shift Coefficient (Zero Backlash x Factor)0.0248inchs_1Transverse Circular Backlash0.0248inchxPinion Shaft Bearing Span8.0000inch$								
** Tool Data - Same for Pinion & Gear **Hob or Rack Type Cutter h_a ISO (1/2 pitch) Tool Addendum (from ref. line)1.4000normalized t_m Measured Tool Tooth Thickness1.5708normalized δ_{a0} Protuberance of Tool0.0000inchFinishing Stock Allowance - Normal0.0000inch r_T Tool Tip Radius0.3936normalized h_{a0} Hypothetical Tool Addendum1.4000normalized f_p Flank Roughness, Arithmetic Average 32.000 $\frac{Gear (Wheel)}{32.000}$ f_p Normal Tip Tooth Thickness **Pinion $\frac{Gear (Wheel)}{32.000}$ h_n Normal Tip Tooth Thickness0.13470.1499 h_n Thinning for Backlash (on ref. diameter)0.06000.0600 Λ_n Thinning for Backlash (on ref. diameter)0.00000.0000 Λ_n Transverse Circular Backlash0.0248inch** Configuration Data ** 0.0248 inch S_0 SolidSolidSolid								
h_{4} ISO (1/2 pitch) Tool Addendum (from ref. line)1.4000normalized t_{m} Measured Tool Tooth Thickness1.5708normalized δ_{a0} Protuberance of Tool0.0000inchFinishing Stock Allowance - Normal0.0000inch r_{T} Tool Tip Radius0.3936normalized h_{a0} Hypothetical Tool Addendum1.4000normalized f_p Flank Roughness, Arithmetic Average32.000 $\frac{Gear (Wheel)}{32.000}$ f_p Flank Roughness, Arithmetic Average0.13470.1499 t_o Normal Tip Tooth Thickness0.68430.7613Normal Tip Tooth Thickness0.68430.7613normalized Δ_n Thinning for Backlash (on ref. diameter)0.06000.0600normalized x Profile Shift Coefficient (Zero Backlash x Factor)0.00000.0000normalized B_t Transverse Circular Backlash0.0248inch $** Configuration Data **PinionSolidGear (Wheel)SolidSolidSPinion Shaft Bearing Span8.0000inch$	Percent Recess Action: 53.11%							
$\begin{array}{cccc} h_a & ISO (1/2 \text{ pitch) Tool Addendum (from ref. line)} & 1.4000 & normalized \\ t_m & Measured Tool Tooth Thickness & 1.5708 & normalized \\ \delta_{a0} & Protuberance of Tool & 0.0000 & inch \\ Finishing Stock Allowance - Normal & 0.0000 & inch \\ r_T & Tool Tip Radius & 0.3936 & normalized \\ h_{a0} & Hypothetical Tool Addendum & 1.4000 & normalized \\ h_{a0} & Hypothetical Tool Addendum & 1.4000 & normalized \\ \end{array}$	** Tool Data - Same for Pinion &	Gear **		Hob or	Rack Typ	e Cutter		
δ_{a0} Protuberance of Tool 0.0000 inchFinishing Stock Allowance - Normal 0.0000 inch $r_{\rm T}$ Tool Tip Radius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 1.4000 normalized f_p ** Surface Finish **PinionGear (Wheel) f_p Flank Roughness, Arithmetic Average 32.000 32.000 $rest$ Normal Tip Tooth Thickness **PinionGear (Wheel) t_0 Normal Tip Tooth Thickness 0.1347 0.1499 $normalized$ 0.6843 0.7613 normalized C Center Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0000 normalized $Rating Based on Nominal (with thinning) ThicknessB_1inchRating Based on Nominal (with thinning) ThicknessB_1inchs_1f_2S_0S_0inchSPinion Shaft Bearing Span8.0000inch$	$h_{\rm a}$ ISO (1/2 pitch) Tool Addendum (from r	ef. line)					normalized	
Finishing Stock Allowance - Normal 0.0000 inch $r_{\rm T}$ Tool Tip Radius 0.3936 normalized h_{a0} Hypothetical Tool Addendum 1.4000 normalized** Surface Finish **PinionGear (Wheel) f_p Flank Roughness, Arithmetic Average 32.000 32.000 micro-inch** Tooth Thickness **PinionGear (Wheel) t_0 Normal Tip Tooth Thickness 0.1347 0.1499 inchNormal Tip Tooth Thickness 0.6843 0.7613 normalized C Center Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.06600 0.0000 normalized $Rating Based on Nominal (with thinning) ThicknessB_1Transverse Circular Backlash0.0248inch** Configuration Data **PinionSolidGear (Wheel)SolidInchSPinion Shaft Bearing Span8.0000inch$	<i>t</i> _m Measured Tool Tooth Thickness			1	.5708		normalized	
$r_{\rm T}$ h_{a0} Tool Tip Radius Hypothetical Tool Addendum0.3936 1.4000normalized h_{a0} Hypothetical Tool Addendum1.4000normalized** Surface Finish ** f_p Pinion Flank Roughness, Arithmetic AveragePinion 32.000Gear (Wheel) 32.000micro-inch** Tooth Thickness ** t_0 Pinion Normal Tip Tooth ThicknessGear (Wheel) 0.1347normalizedto Normal Tip Tooth Thickness0.1347 0.14990.1499 inch 0.1347inch Δ_0 Center Distance for Calculation of Zero Backlash (Mean) Profile Shift Coefficient (Zero Backlash (Mean)18.6283 0.0000inch Δ_n Thinning for Backlash (on ref. diameter) Profile Shift Coefficient (Zero Backlash x Factor)0.0600 0.00000.0000 normalized B_t Transverse Circular BacklashPinion SolidGear (Wheel) Solid S Pinion Shaft Bearing SpanPinion 8.0000Gear (Wheel) Solid	δ_{a0} Protuberance of Tool			0	.0000		inch	
h_{a0} Hypothetical Tool Addendum1.4000normalized h_{a0} Surface Finish **Pinion 32.000Gear (Wheel) 32.000micro-inch f_p Flank Roughness, Arithmetic AveragePinion 32.000Gear (Wheel) 32.000micro-inch** Tooth Thickness **Pinion 0.1347Gear (Wheel) 0.1499inch inch normalized t_o Normal Tip Tooth Thickness0.13470.1499inch normalizedNormal Tip Tooth Thickness0.68430.7613normalizedCCenter Distance for Calculation of Zero Backlash (Mean)18.6283inch Δ_n Thinning for Backlash (on ref. diameter)0.06000.0600normalized x Profile Shift Coefficient (Zero Backlash x Factor)0.00000.0000normalized B_t Transverse Circular BacklashPinion SolidGear (Wheel) SolidSolid S Pinion Shaft Bearing SpanS.0000inch	-			0	.0000		inch	
** Surface Finish **PinionGear (Wheel) f_p Flank Roughness, Arithmetic Average 32.000 micro-inch** Tooth Thickness **PinionGear (Wheel) t_o Normal Tip Tooth Thickness 0.1347 0.1499 Normal Tip Tooth Thickness 0.6843 0.7613 normalizedCCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedBtTransverse Circular Backlash 0.0248 inch** Configuration Data **Pinion SolidGear (Wheel) SolidSolidSPinion Shaft Bearing Span 8.0000 inch								
f_p Flank Roughness, Arithmetic Average 32.000 32.000 micro-inch** Tooth Thickness **PinionGear (Wheel) t_o Normal Tip Tooth Thickness 0.1347 0.1499 inchNormal Tip Tooth Thickness 0.6843 0.7613 normalized C Center Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalized x Profile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalized B_t Transverse Circular Backlash 0.0248 inch** Configuration Data ** $Gear Blank Construction$ SolidSolid S Pinion Shaft Bearing Span 8.0000 inch	h_{a0} Hypothetical Tool Addendum			1	.4000		normalized	
f_p Flank Roughness, Arithmetic Average 32.000 32.000 micro-inch** Tooth Thickness **PinionGear (Wheel) t_o Normal Tip Tooth Thickness 0.1347 0.1499 Normal Tip Tooth Thickness 0.6843 0.7613 normalizedCCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedBtTransverse Circular Backlash 0.0248 inch** Configuration Data **Pinion SolidGear (Wheel) SolidSPinion Shaft Bearing Span 8.0000 inch	** Surface Finish **]	Pinion	Ge	ear (Whee	1)	
t_0 Normal Tip Tooth Thickness 0.1347 0.1499 inchNormal Tip Tooth Thickness 0.6843 0.7613 normalizedCCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedBtTransverse Circular Backlash 0.0248 inch** Configuration Data **PinionGear (Wheel)Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span 8.0000 inch	<i>f</i> _p Flank Roughness, Arithmetic Average		3	2.000	32	2.000	micro-inch	
t_0 Normal Tip Tooth Thickness 0.1347 0.1499 inchNormal Tip Tooth Thickness 0.6843 0.7613 normalizedCCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedBtTransverse Circular Backlash 0.0248 inch** Configuration Data **PinionGear (Wheel)Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span 8.0000 inch	** Tooth Thickness **		1	Pinion	G	oar (Whee	D	
Normal Tip Tooth Thickness 0.6843 0.7613 normalizedCCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedBased on Nominal (with thinning) ThicknessBtTransverse Circular Backlash 0.0248 inch** Configuration Data **Pinion SolidGear (Wheel) SolidSPinion Shaft Bearing Span 8.0000 inch								
CCenter Distance for Calculation of Zero Backlash (Mean) 18.6283 inch Δ_n Thinning for Backlash (on ref. diameter) 0.0600 0.0600 normalizedxProfile Shift Coefficient (Zero Backlash x Factor) 0.0000 0.0000 normalizedRating Based on Nominal (with thinning) Thickness B_t Transverse Circular Backlash 0.0248 inch** Configuration Data **Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span 8.0000 inch	-							
$\begin{array}{cccc} \Delta_{n} & Thinning for Backlash (on ref. diameter) & 0.0600 & 0.0600 & normalized \\ x & Profile Shift Coefficient (Zero Backlash x Factor) & 0.0000 & 0.0000 & normalized \\ Bating Based on Nominal (with thinning) Thickness \\ B_{t} & Transverse Circular Backlash & 0.0248 & inch \\ & & & & & & & & \\ & & & & & & & & & $	-	Backlash (Me						
xProfile Shift Coefficient (Zero Backlash x Factor)0.00000.0000normalizedBtTransverse Circular Backlash0.0248inch** Configuration Data **Pinion Gear Blank ConstructionGear (Wheel) SolidSPinion Shaft Bearing Span8.0000inch						.0600		
BtTransverse Circular BacklashRating Based on Nominal (with thinning) ThicknessBtTransverse Circular Backlash0.0248inch** Configuration Data **PinionGear (Wheel)Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span8.0000inch	•							
** Configuration Data **PinionGear (Wheel)Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span8.0000inch			Rating Ba	ased on No	ominal (wi	th thinnir	ng) Thickness	
Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span8.0000inch	<i>B</i> _t Transverse Circular Backlash			0	.0248		inch	
Gear Blank ConstructionSolidSolidSPinion Shaft Bearing Span8.0000inch	** Configuration Data **		l	Pinion	Ge	ear (Whee	D	
SPinion Shaft Bearing Span8.0000inch			-				-	
S_1 Pinion Offset 0.0000 inch	S Pinion Shaft Bearing Span		8				inch	
	S ₁ Pinion Offset		0	.0000			inch	

	617 Seventh edition chapter 3, rating er aper Gear Set 1		a Set: 1 Page 3 7/07/27 16:18:30
	5 mn a 20 18 helix		Ianufacturers Association
Nitride	d	Gear Rating Suite	e - GUI Version 3.0.170
	** AGMA Materials **	Pinion	Gear (Wheel)
	Material	Steel	Steel
	Material Sub Class	Nitralloy 135M	
	Heat Treatment	Nitrided	Nitrided
	Material Grade	2	2
Up UG	Poisson's Ratio	0.3000	0.3000
	Modulus of Elasticity	29,500,000.	29,500,000. psi
	** Material Hardness **	Pinion	Gear (Wheel)
	Surface Hardness	90 Rockwell	
	Core Hardness	321 Brinell	321 Brinell
	Note: Hardness conversions are approximate		
	** Application Data (Wheel Driving) **	Pinion	Gear (Wheel)
$n_{\rm p}$	Speed	18,744.8	3,600.0 rpm
Ĺ	Design Life	175	,200. hours
Ν	Design Life	1.9705E11	3.7843E10 cycles
q	Contacts per Revolution	1	1
-	Idler?	No	No
	** Tolerances **	Pinion	Gear (Wheel)
	AGMA 2000 Quality Number	Q12	Q12
	** API 617 Seventh edit Outpu		
	Power Rating, Calculate from Service Factor	r	
	** Effective Case Data **	Pinion	Gear (Wheel)
$U_{ m c}$	Core Hardness Coefficient	0.0000	0.0000
	Total Case Depth	0.0000	0.0000 inch
	Figure 15 Heavy Minimum Total Case Depth	0.0237	0.0237 inch
	Figure 15 Normal Minimum Total Case Depth	0.0171	0.0171 inch
	** Dynamic Factor **		
$V_{\rm p}$	Pitch Variation (input)	2.0866	2.7559 0.0001
$A_{ m v}$	Transmission Accuracy Number	C	0.0000
K_{v}	Dynamic Factor	1	.1200
	** Load Distribution Factor **		
$K_{\rm m}$	Load Distribution Factor (input)	1	2162
	** AGMA 908 DATA (normalized) **	Pinion	Gear (Wheel)
	Minimum Contact Length	10	inch inch
K_{f}	Stress Correction Factor	1.4277	1.5500
Ι	I-Factor	C	.2363
J	J-Factor	0.5467	0.6264

FTM P	617 Seventh edition chapter 3, rating engine aper Gear Set 1 5 mn a 20 18 helix d	American G		U	8:30 ation
	** Yield Strength Factors ** Application Requirements (for yield strength factor):	Pinio	<u>n</u> Industrial F	Gear (Whee	<u>1)</u>
K_{y}	Yield Strength Factor	0.750		0.7500	
$K_{\rm my}$	Load Distribution Factor - Overload	0.750	1.1600		
$W_{\rm max}$	Maximum Tangential Load		7,975.6		lbf
Say	Allowable Yield Strength	121,922	-	121,922.	psi
uy uy	Yield Strength Safety Factor	7.484		9.3105	I
	** General Factors **				
$K_{\rm s}$	Size Factor		1.0000		
K_{T}	Temperature Factor		1.2500		
W_{t}	Tangential Load		7,975.6		lbf
~	** Pitting Durability Stress Factors Summary **	<u>Pinio</u>		Gear (Whee	<u>l)</u>
C_{f}	Surface Condition Factor		1.0000		
$C_{\rm G}$	Gear Ratio Factor		0.8389		
C_{H}	Hardness Ratio Factor		1.0000		(11 (1 40) 4 5
$C_{\rm p}$	Elastic Coefficient	0 554	2,271.44		(lb/in^2)^.5
$Z_{\rm N}$	Pitting Durability Stress Cycle Factor	0.574	7	0.6304	
$C_{ m H}$	** Bending Strength Stress Factors Summary ** Hardness Ratio Factor	<u>Pinio</u>	<u>n</u> 1.0000	Gear (Whee	<u>1)</u>
$K_{\rm B}$	Rim Thickness Factor	1.000	0	1.0000	
$Y_{\rm N}$	Bending Strength Stress Cycle Factor	0.726	6	0.7664	

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided v. 1.0031 Data Set: 1 Page 5 2017/07/27 16:18:30 American Gear Manufacturers Association Gear Rating Suite - GUI Version 3.0.170

**** MAIN RATING VALUES ****

	** PITTING **	Pinion	Gear (Whe	el)
Κ	Contact Load Factor		253.426	psi
S _{ac}	Allowable Contact Stress Number	183,000.	183,000.	psi
$P_{\rm acu}$	Allowable Transmitted Power at Unity Service Factor	9,966.8	11,989.8	hp
$C_{\rm SF}$	Service Factor (minimum, input)		1.4000	
$P_{\rm ac}$	Allowable Power at Input Service Factor	7,119.1	8,564.2	hp
	** BENDING **	<u>Pinion</u>	Gear (Whe	el)
$U_{ m L}$	Unit Load		6,482.6	psi
$P_{\rm atu}$	Allowable Transmitted Power at Unity Service Factor	14,326.2	17,313.6	hp
S _{at}	Allowable Bending Stress Number	53,180.	53,180.	psi
$K_{\rm SF}$	Service Factor (minimum, input)		1.4000	
$P_{\rm at}$	Allowable Power at Input Service Factor	10,233.0	12,366.8	hp
	** POWER SUMMARY **	Pinion	Gear (Whe	<u>eel)</u>
$W_{\rm t}$	Tangential Force		7,975.6	lbf
$T_{\rm P}$ $T_{\rm G}$	Member Torque	23,936.6	124,635.	in-lb
P_{a}	Allowable Power at Input Service Factor		7,119.1	hp

FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix Nitrided Data Set: 1Page 12017/07/2716:17:52American Gear ManufacturersAssociationGear Rating Suite - GUI Version 3.0.170

** AGMA 6011 Error Messages **

Note: All 6011 warnings also apply to API 613

7) Note, see AGMA 6011 I03 Table 2 for recommended accuracy grades as a function of pitch line velocity

** API 613 Error Messages **

5) Warning, standard violated: Pinion Tooth accuracy must be ISO 1328-1 grade 4 or better

6) Warning, standard violated: Gear Tooth accuracy must be ISO 1328-1 grade 4 or better

Gear Set Type Single Helical	
$N_{\rm P} N_{\rm G}$ Number of Teeth 29 151	
$m_{\rm G}$ Gear Ratio (Hunting Tooth Set) 5.2069	
m _n Normal Module 5.0000	mm
C Center Distance 18.6283	inch
Standard Center Distance 18.6283	inch
F Face Width 6.2500 6.2500	inch
FEffective Face Width6.2500	inch
<i>n</i> Speed 18,744.8 3,600.0	rpm
v_t Pitch Line Velocity 29,456.3	ft/min
ϕ_n Normal Reference Pressure Angle 20.0000	degrees
ϕ_t Transverse Operating Pressure Angle 20.9419	degrees
ψ_s Helix Angle 18.0000	degrees
Operating Helix Angle 18.0000	degrees
$h_{\rm t}$ Whole depth 0.4887 0.4887	inch
<i>c</i> Tip to Root Clearance 0.0950 0.0950	inch
Pinion Tip to Gear Root / Gear Tip to Pi	inion Root
** Diameters ** Pinion Gear (Whee	<u>l)</u>
$d_{\rm o} D_{\rm o}$ Tip Diameter 6.3961 31.648	inch
$a_{\rm oP} a_{\rm oG} {\rm Addendum}$ 1.0000 1.0000	normalized
DReference Pitch Diameter6.002431.254	inch
<i>d</i> Operating (working) Pitch Diameter 6.0024 31.254	inch
d_{SAP} Start of Active Profile (Minimum) 5.7104 30.932	inch
Start of Involute Diameter5.662530.798	inch
Db Base Diameter 5.6059 29.1896	inch
$D_{\rm R}$ Root Diameter 5.4188 30.670	inch
** Ratios ** Pinion Gear (Whee	1)
m _p Transverse (Profile) Contact Ratio 1.6405	
$m_{\rm F}$ Axial (Face) Contact Ratio 3.1230	
$m_{\rm t}$ Total Contact Ratio 4.7635	
Facewidth to Operating Pitch Diameter Ratio1.04120.2000	
Facewidth to Center Distance Ratio0.33550.3355	

API 613 5th Edition Rating Data Set: 1 FTM Paper Gear Set 1 151-29 5 mn a 20 18 helix 2017/07/27 American Gear Manufacturers Association Nitrided Gear Rating Suite - GUI Version 3.0.170 ** Line of Action Data **

Page 2

16:17:52

C	our Driving First Contact No.		iding valoe	ity is for n	inion chan	go sign for	goor slidi	na volocity
	Gear Driving, First Contact Near Gear Root Sliding velocity is for pinion, change sign for gear sliding velocity Point C1 determined by gear tip diameter						ig velocity	
1	Sint C1 determined by gear tip	Distance Pinion	Pinion	Gear	Gear	Sliding	Specific	Specific
		on line Roll	Diameter			Velocity		Sliding
Р	oints on line of action	of action Angle	inch	Angle	inch	in/sec	Pinion	Gear
	1 Gear End of Active Profile	0.5435 11.1106		24.0045	31.648	-1,238.19		0.5371
	2 Gear Highest Point STC	0.9325 19.0616		22.4775		-328.02	-0.1792	0.1520
				21.9271	31.254	0.0000	0.0000	0.0000
	4 Gear Lowest Point STC	1.1508 23.5244		21.6204	31.199	182.845	0.0809	-0.0881
C	5 Gear Start of Active Profile	1.5398 31.4754	6.3961	20.0934	30.932	1,093.01	0.3616	-0.5665
C	6 Total Line of Action Length	n 6.6581 inch						
	Point C5 determined by Pinie							
	Percent Approach Action:	46.89%						
	Percent Recess Action:	53.11%						
	** Tool Data - Sa	ame for Pinion & G	ear **		Hob or	Rack Typ	e Cutter	
h						.4000		normalized
$t_{\rm r}$	⁴ m Measured Tool Tooth Thickness				1	.5708		normalized
δ	δ_{a0} Protuberance of Tool				0.0000 incl			inch
	Finishing Stock Allowance - Normal				0.0000 inch			inch
r	$T_{\rm T}$ Tool Tip Radius				0.3936 normalize			
h	^{a0} Hypothetical Tool Add	dendum		1.4000 norm				normalized
** Tooth Thickness **				,	D'	C		
4					<u>Pinion</u> .1347		ear (Wheel	inch
t	Normal Tip Tooth Thi Normal Tip Tooth Thi				.1347		.1499 .7613	normalized
C	•		eklash (Me			.6283	./013	inch
Δ			iekiasii (ivie	,	.0600		.0600	normalized
x	Profile Shift Coefficie		Factor)		.0000		.0000	normalized
л	Tionic Shift Coefficie	In (Zero Daekiash x	1 actor)					ag) Thickness
В	t Transverse Circular Ba	acklash		Kating D		.0248		inch
D		aontashi			0	.0210		mon
	** API Materials	s **		Pinion Gear (Wheel)				<u>)</u>
					Material is Steel			
Heat Treatment			Nitrided Nitrided					
Surface Hardness			90.	0 Rockwell	115N 90.	0 Rockwel	1 15N	
	Note: Hardness cor	versions are approxi	mate					
	** Application D	ata (Wheel Driving)	**]	Pinion	Ge	ear (Wheel)
n	C 1	Ċ,		_	744.8		600.0	rpm
q	Contacts per Revolution	on			1		1	
	Idler?				No		No	

Data Set: 1 Page 3 FTM Paper Gear Set 1 2017/07/27 16:17:52 151-29 5 mn a 20 18 helix American Gear Manufacturers Association Nitrided Gear Rating Suite - GUI Version 3.0.170 ** API 613 Data ** Pinion Gear (Wheel) Material Index Number (pitting allowable) $I_{\rm m}$ 300.23 300.23 psi S_a Bending Stress Number (allowable) 27,557.2 27,557.2 psi Type of Rating: **Power Rating, Calculate from Service Factor** SFAPI 613 Service Factor (input) 1.4000 ** AGMA 908 DATA (normalized) ** Gear (Wheel) Pinion K_{f} Stress Correction Factor 1.4277 1.5500 I-Factor Ι 0.2363 JJ-Factor 0.5467 0.6264 **** API 613 RATING OUTPUT **** ** PITTING ** Ka Tooth Pitting Index, allowable 214.449 psi Allowable Power at input Service Factor 6,024.2 hp ** BENDING ** Pinion Gear (Wheel) Allowable Power at input Service Factor 6,903.3 7,909.8 hp **** POWER SUMMARY **** Allowable Power at Input Service Factor 6,024.2 hp