Dynamic Loads in Parallel Shaft Transmissions

Part 1

Hsiang-Hsi (Edward) Lin
Memphis State University, Memphis, TN

Ronald L. Huston
University of Cincinnati, Cincinnati, OH

John J. Coy
NASA Lewis Research Center, Cleveland, OH
Introduction

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn has stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

For example, in industrial settings, a high performance gear system is often obtained by overdesigning and by sacrificing costs, materials, and compactness. In aerospace and military application where weight is a premium, gear systems are often designed under conditions very close to the failure limits, thereby introducing uncertainties in performance and life prediction. They are often prematurely replaced to prevent in-service failure. Moreover, gear systems are often designed by using static analyses. However, when gear systems operate at high speed, there are several factors which affect their performance. These include shaft torsional stiffness, gear tooth loading and deformation, gear tooth spacing and profile errors, rotating speeds, mounting alignment, dynamic balance of rotating elements, gear and shaft masses and inertia, and the masses and inertias of the driving (power) and driven (load) elements.

There is no agreement among researchers on the best methods for evaluating dynamic load effects. Hence, gear designers are often confronted with conflicting theories. They generally have to rely on past experience, service safety factors, and experimental data with a limited range of applicability.

The objective of this report is to provide more insight into the factors affecting dynamic loads.

Research efforts on gear system dynamics have been conducted for many years. In 1892 Lewis\(^1\) recognized that the instantaneous tooth load was affected by the velocity of the system. In 1925, Earle Buckingham\(^2\) headed an experimental research effort, endorsed by ASME, to measure dynamic effects. A report published in 1931 represented the first authoritative document on gear dynamics. It presented a procedure for determining the so-called dynamic load increment due to mesh dynamics and gear tooth errors.

In 1959, Attia\(^3\) performed an experiment to determine actual instantaneous loading. He found that Buckingham's results were conservative.

In 1958, Niemann and Rettig\(^4\) found that larger masses caused higher dynamic loads, but as the average load became larger, the effect of larger masses became less important. They also found that very heavily loaded gear systems showed no appreciable dynamic load increment, whereas in lightly and moderately loaded gear systems, there were considerable dynamic load increments. In 1958, Harris\(^5\) suggested that for gear systems isolated from external stimuli, there are three internal sources of dynamic loads:

1. Error in the velocity ratio measured under the working load.
2. Parametric excitation due to stiffness variation of the gear teeth.
3. Nonlinearity of tooth stiffness when contact is lost.

In 1970, Houser and Seireg\(^6\) developed a generalized dynamic effect formula for spur and helical gears operating away from system resonances. The formula took into consideration the gear geometry and manufacturing parameters as well as the dynamic characteristics of the system.

In 1972, Ichimaru and Hirano\(^7\) analyzed heavy-loaded spur gear systems with manufacturing errors under different operating conditions. They found that the change in tooth profile showed a characteristic trend to decrease dynamic load. In 1978, Cornell and Westervelt\(^8\) presented a closed form solution for a dynamic model of a spur gear system and showed that tooth profile modification, system inertia and damping, and system critical speeds can have significant effects upon the dynamic loads. In 1981, Kasuba and Evans\(^9\) presented a large scale digitized extended gear modeling procedure to analyze spur gear systems for both static and dynamic conditions. Their results indicated that gear mesh stiffness is probably the key element in the analysis of gear train dynamics. They showed that the gears and the adjacent drive and load systems can be designed for optimum performance in terms of minimum allowable dynamic loads for a wide range of operating speeds.

In 1981, Wang and Cheng\(^10\) developed another dynamic load response algorithm. They reported that the dynamic load is highly dependent on the operating speed. This model is later modified by Lewicki\(^11\) to account for the nonlinear Hertzian deformation of meshing gear teeth. The gear dynamic load found from the revised model showed little difference from the original model, since the Hertzian deflection was relatively small in comparison with the total gear tooth deflection. Nagaya and Uematsu\(^12\) stated that because the contact point moves along the involute profile, the dynamic response should be considered as a function of both the position and speed of the moving load. In 1982, Terauchi, et al.,\(^13\) studied the effect of tooth profile modifications on the dynamic load of spur gear systems. According to their results, the dynamic load decreased with proper profile modifications.

In this first part of the article, we present a model of a parallel shaft transmission. We consider the effects of shaft stiffness and inertia, load and power source inertias, tooth stiffness, local compliance due to contact stresses, load sharing, and friction. A parameter study is provided in the second part of the article.
Modeling

Fig. 1 depicts a model of the transmission. It consists of a motor or power source connected by a flexible shaft to the gear system. The gear system consists of a pair of involute spur gears. They are connected to the load by a second flexible shaft as shown. Symbolically, the model may be represented by a collection of masses, springs, and dampers as in Fig. 2.

Let $\theta_M$, $\theta_1$, $\theta_2$, and $\theta_l$ represent the rotations of the motor, the gears, and the load. Then by using standard procedures of analysis, the governing differential equations for the rotations may be written as

\begin{align*}
J_M \ddot{\theta}_M + C_{sl}(\ddot{\theta}_M - \ddot{\theta}_l) + K_{sl}(\theta_M - \theta_l) &= T_M \\
J_I \ddot{\theta}_I + C_{sl}(\ddot{\theta}_I - \ddot{\omega}_M) + K_{sl}(\theta_I - \theta_M) + C_s(t)[R_{b1}\ddot{\theta}_1 - R_{b2}\ddot{\theta}_2] + K_s(t)[R_{b1}(R_{b1}\theta_1 - R_{b2}\theta_2)] &= T_I(t) \\
J_2 \ddot{\omega}_2 + C_{sl}(\ddot{\omega}_2 - \ddot{\theta}_I) + K_{sl}(\omega_2 - \theta_I) + C_s(t)[R_{b2}\ddot{\theta}_2 - R_{b1}\theta_1] + K_s(t)[R_{b2}(R_{b2}\theta_2 - R_{b1}\theta_1)] &= T_2(t) \\
J_1 \ddot{\theta}_1 + C_{sl}(\ddot{\theta}_1 - \ddot{\omega}_I) + K_{sl}(\theta_1 - \theta_I) &= -T_L
\end{align*}

(1) The dynamic process is studied in the rotating plane of the gears. Out-of-plane twisting and misalignment are neglected.
(2) Damping due to lubrication of the gears and shafts is expressed in terms of constant damping factors.
(3) The differential equations of motion are developed by using the theoretical line of action.
(4) Low contact ratio gears are used in the analysis. Specifically, the contact ratio is taken between 1 and 2.

Analysis

A major task in the analysis is to determine the values of the stiffness, damping, and friction coefficients appearing in Equations 1 to 4. Another task is to determine the ratio of load sharing between the teeth during a mesh cycle. These factors depend on the roll angle of the gears. Thus, Equations 1 to 4 are made nonlinear by these terms.

STIFFNESS

Gear stiffness. Consider first the stiffness coefficients $K_{sl}$, $K_{cl}$, and $K_0$. Let the tooth surface have the form of an involute curve. Let $W_j$ be the transmitted load at a typical point $j$ of the tooth profile. Let $\eta_j$ be the deformation of the tooth at point $j$ in the direction of $W_j$. Then the gear stiffness $K_{il}$ for the gear teeth in contact at $j$ is

\[ K_{il} = \frac{W_j}{\eta_j} \]

In general $\eta_j$ will depend on the following: (1) the bending of the tooth, the shear deformation of the tooth, and the axial compression of the tooth; (2) the deflection due to the flexibility of the tooth foundation and fillet; and (3) the local compliance due to the contact stresses.

---

Gear Manufacturing Symposium
"Just In Time" Problem Solving
April 1-3, 1990 -- Columbus, Ohio

AGMA's Gear Manufacturing Symposium concentrates on the latest and most effective manufacturing techniques. This year the symposium looks at "Just In Time" manufacturing--what it is, how it works and its relationship with heat treatment. A portion of the program is devoted to hard finishing of bevel gear by several methods. Additional topics include Near Net Forging, Form Grinding and Noise Control.

On Monday afternoon, there will be a tour of the Rockwell International Newark, Ohio Plant.

Featured Topics
- "Just In Time" Manufacturing and Heat Treating
- Hard Finishing, Bevel and Parallel Axis Gears
- State-of-The-Art Bevels and Hypoid Processing
- Near Net Forging

Something New This Year--Small Group Workshops

The 1990 symposium will also feature small group workshops. These will be conducted more than once, so everyone will be able to attend all the workshops.

For more information, call: American Gear Manufacturers Association
1500 King Street, Suite 201 Alexandria, VA 22314
(703) 684-0211

Registration Fee: AGMA Members $375 • Non-members $495. For non-members, fee must accompany registration form.

CANCELLATION POLICY: A refund will be issued only if cancellation is received in writing 15 days prior to the meeting start date. Registrants who have not met the cancellation deadline will be liable for full payment.
To determine $q$, let the tooth be divided into elements as shown in Fig. 3. Let $i$ be a typical element with thickness $T_i$, cross section area $A_i$, and second moment of inertia $I_i$. Let $l_{ij}$ be the distance between element $i$ and point $j$ along the $x$-axis. Let $\beta_i$ be the angle between $W_j$ and the $y$-axis. (See Fig. 3.)

Consider the tooth to be a nonuniform cantilever beam. Let $q_{bi}$ be the contribution to $q_j$ by the bending, shear, and axial deformation of the tooth. The $q_{bij}$ may be represented as the sum of the deformation in the elements $i$ beneath point $j$. That is,

$$q_{bij} = \sum_{i=1}^{n} q_{bij}$$

where $n$ is the number of elements beneath $j$ and $q_{bij}$ is the deformation of element $i$ due to the load $W_j$.

(continued on page 30)
Gearmakers worldwide face customer demands for highest quality and on-time delivery at fiercely competitive prices. Meeting these demands requires greater flexibility, productivity and the ability to integrate new technology. Recognizing your ultimate goals — customer satisfaction and profitability — Klingelnberg global technology is ready with the most advanced CNC Spiral Bevel Gear Generators and Grinders, and the most complete line of CNC Gear Checkers available... anywhere.

We've put it all together:

Spiral Bevel Gear Applications
- KNC 40/60 fully CNC controlled Generators
- AMK Large Gear Generators
- W800CNC (Wiener System) Grinder
- CNC Inspection Equipment
- Quench Presses

Worm and Rotor Grinding Applications
- HNC Series of CNC controlled Grinders
- CNC Inspection Systems

Parallel Axis Gear Applications
- CNC controlled gear Inspection Systems
- SNC Series of CNC Hob Sharpeners
- Gear Cutting Tool Inspection Systems
The KNC-40/60 Gear Generators
These new, fully CNC, 8 axis gear generators produce Spiral Bevel Gears up to 24" O.D. Perfect for small batch or intermediate level production runs, the KNC Series generates Spiral Bevel Gears of any geometry by continuous or single indexing operation. Its program storage capacity for 250 different workpieces and unlimited storage capacity with a DNC interface, makes it the most flexible gear generator you can buy.

The W800CNC Gear Grinder (Wiener System)
With leading edge technology, the W800CNC becomes the universal Spiral Bevel Gear grinder for any gear geometry. Perfect for ground gear quality applications up to 31.5" O.D., the grinder offers great versatility, short set-ups and superior accuracy.

The PNC Series Gear Checkers
Compact, new CNC controlled gear checkers provide fully automatic measuring of gears up to 80" O.D. Fast operation, high accuracy, excellent documentation and a wide variety of software modules, form the perfect gear checking package.

For the latest information on Klingelnberg systems that satisfy customer demands, for increased productivity and profitability, contact our representative. Or, write to Klingelnberg Gear Technology Inc., 15200 Foltz Industrial Parkway, Strongsville, OH 44136 Phone: 216/572-2100; FAX: 216/572-0985.

KLINGELNBERG
...Puts it all together.
DYNAMIC LOADS . . .
(continued from page 27)

DAMPING
Shaft damping. — Next consider the damping coefficients $C_{s1}$, $C_{s2}$, and $C_g$. Damping in the shafts is due to the shaft material. In Equations 1 to 4 the coefficients $C_{s1}$ and $C_{s2}$ are taken to have the form

$$C_{s1} = 2E \left( \frac{K_{s1}}{J_{M}} \right)^{1/2}$$

$$C_{s2} = 2E \left( \frac{K_{s2}}{J_{I}} \right)^{1/2}$$

where $Y_i$ is the half-tooth thickness at element $i$ (See Fig 3.), $\nu$ is Poisson’s ratio, and $E$ is the “effective elastic modulus” depending upon whether the tooth is wide (plane strain) or narrow (plane stress). Specifically, for a “wide” tooth, where the ratio of the width to thickness at the pitch point exceeds $5$, $E$ is

$$E_w = \frac{E}{1 - \nu^2}$$

where $E$ is Young’s modulus of elasticity. For a “narrow” tooth (width-to-thickness ratio less than 5), $E$ is

$$E_n = E$$

Expressions similar to Equation 7 hold for $q_{bj}$, the contribution to $q_i$ for the deformation due to the flexibility of the tooth fillet and foundation.\(^{(15)}\)

Let $q_{c}$ be the contribution to $q_i$ from the local compliance due to contact stresses. With the procedures of Lundberg and Palmgren\(^{(16)}\) $q_{c}$ may be expressed as

$$q_{c} = \frac{0.75}{E^0.5G^0.8W_i^{0.1}}$$

where $F$ is the width of the tooth.

Hence, by superposition, the deformation at $j$ in the direction of $W_j$ is

$$q_i = q_{bj} + q_{c} + q_{c}$$

The above expressions were used to calculate the deformations for two different gear pairs. The results are shown graphically in Figs. 4a and b.

Shaft stiffness. — The shaft stiffness $K_s$ is given by the standard expression

$$K_s = \frac{JG}{I}$$

where $G$ is the shear modulus, $I$ is the shaft length, and $J$ is the polar moment of area given by

$$J = \frac{\pi D^4}{32}$$

where $D$ is the shaft diameter.
Fig. 5-Friction Coefficient of Gears in Figure 4a at 1500 RPM.

and

\[ C_{s2} = 2\xi \left( \frac{K_{s2}}{J_1 + \frac{1}{J_2}} \right)^{1/2} \]  

(15)

where \( \xi \) represents the damping ratio. Experiments have shown that \( \xi \) has values between 0.005 and 0.075.(17)

**Mesh damping.** — Similarly, the effect of damping of the gear mesh is taken as

\[ C_r = 2\xi \left( \frac{K_{r2} \cdot R_{J1} \cdot J_2}{R_{J1} + \frac{1}{R_{J2}}} \right)^{1/2} \]  

(16)

where, as before, \( \xi \) is the damping ratio. Measurements have shown \( \xi \) to have values between 0.03 and 0.17.(9-10)

**Friction.** — Equations 1 to 4 contain terms \( T_{i1} \) and \( T_{i2} \) which represent the frictional moments of the driving and driven gears. These moments occur because of the relative sliding of the gear teeth. Buckingham(18) has recorded a semiempirical formula for the friction coefficient \( f \) of boundary lubrication as

\[ f = 0.05e^{-0.125V_d} + 0.002 \sqrt{V_d} \]  

(17)

where \( V_d \) is the sliding speed measured in in./sec. An analogous expression for elastohydrodynamic lubrication has been developed by Benedict and Kellay(9) and by Anderson and Loewenthal(20) as follows:

\[ f = 0.0127 \log \left( C_i, W / F, V_d, V_R^2 \right) \]  

(18)

where

- \( C_i = 29.66 \) (SI units)
- \( = 45.94 \) (English units)
- \( W = \) the applied load, N/m (lb/in.)
- \( F = \) face width, mm (in.)
- \( V_d = \) rolling velocity, mm/sec (in./sec)
- \( \nu_o = \) lubricant viscosity, N-sec/m² (lb-sec/in.²)

Figures 5a and b show graphs of the friction coefficient as given by Equations 17 and 18 as a function of the roll angle. Figs. 6a and b show the resulting effect upon the friction torque.

**MESH ANALYSIS**

Fig. 7 illustrates the motion of a pair of meshing teeth. The initial contact occurs at \( A \), where the addendum circle of the driven gear intersects the line of action. As the gears rotate the point of contact will move along the line of action \( APD \).
<table>
<thead>
<tr>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_i$</td>
</tr>
<tr>
<td>$C_g$</td>
</tr>
<tr>
<td>$C_s$</td>
</tr>
<tr>
<td>$E_e$</td>
</tr>
<tr>
<td>$F$</td>
</tr>
<tr>
<td>$G$</td>
</tr>
<tr>
<td>$I_i$</td>
</tr>
<tr>
<td>$J_L$</td>
</tr>
<tr>
<td>$J_M$</td>
</tr>
<tr>
<td>$J_1$</td>
</tr>
<tr>
<td>$J_2$</td>
</tr>
<tr>
<td>$K_g$</td>
</tr>
<tr>
<td>$K_s$</td>
</tr>
<tr>
<td>$L_{ij}$</td>
</tr>
<tr>
<td>$q_{gb}$</td>
</tr>
<tr>
<td>$q_c$</td>
</tr>
<tr>
<td>$q_i$</td>
</tr>
<tr>
<td>$q = q_{gb} + q_c + q_i$</td>
</tr>
<tr>
<td>$R_b$</td>
</tr>
<tr>
<td>$R_p$</td>
</tr>
<tr>
<td>$t_i$</td>
</tr>
<tr>
<td>$T_L$</td>
</tr>
<tr>
<td>$T_M$</td>
</tr>
<tr>
<td>$T_1$</td>
</tr>
<tr>
<td>$T_2$</td>
</tr>
<tr>
<td>$V_{sl}$</td>
</tr>
<tr>
<td>$V_R$</td>
</tr>
<tr>
<td>$W$</td>
</tr>
<tr>
<td>$x_i$</td>
</tr>
<tr>
<td>$y_i$</td>
</tr>
<tr>
<td>$\beta$</td>
</tr>
<tr>
<td>$\delta$</td>
</tr>
<tr>
<td>$\theta$</td>
</tr>
<tr>
<td>$\Theta$</td>
</tr>
<tr>
<td>$\Theta$</td>
</tr>
<tr>
<td>$\mu_o$</td>
</tr>
<tr>
<td>$\nu$</td>
</tr>
<tr>
<td>$\xi$</td>
</tr>
</tbody>
</table>
When the tooth pair reaches B, the recessing tooth pair disengages at D leaving only one zone. When the tooth pair reaches point C, the next tooth pair begins engagement at A and starts another cycle.

In the analysis, the position of the contact point of the gear teeth along the line of action is expressed in terms of roll angles of the driving gear tooth.

Fig. 8 shows typical stiffness and load sharing characteristics through a mesh cycle. Let a series of mating tooth pairs be denoted as a, b, c, d and let points A, B, P, C, D be the same as those in Fig. 7. Then AB and CD represent the double contact regions, BC represents the single contact region, and, as before, P is the pitch point.

The stiffness values at double contact regions are clearly much higher than those at single contact regions. When gears rotate at appreciable speed, this time-varying stiffness...
as shown in Fig. 8 is the major excitation source for the dynamic response of the system.

Discussion

The objective of this analysis is to establish the governing differential equations and to present a procedure for solution. As noted, the equations themselves are nonlinear. However, they may be efficiently solved by using the following linearized-iterative procedure.

The linearized equations may be obtained by dividing the mesh cycle into \( n \) equal intervals. Let a constant input torque \( T_M \) be assumed. Let the output torque \( T_l \) be fluctuating because of damping in the gear mesh, because of friction, and because of time-varying mesh stiffness.

Let initial values of the angular displacements be obtained by preloading the input shaft with the nominal torque carried by the system. Initial values of the angular speeds may be taken from the nominal operating speed of the system.

The iterative process is then as follows: the calculated values of the angular displacements and angular speeds after one period are compared with the assumed initial values. Unless the differences between them are sufficiently small, the procedure is repeated by using the average of the initial and calculated values as new initial values.

Finally, observe that the term \( (R_{b1}\theta_1 - R_{b2}\theta_2) \) in the equation of motion represents the relative dynamic displacement of the gears. Let \( \delta \) represent the backlash. Let gear 1 be the driving gear. The following conditions can occur:

**Case 1**

\[
R_{b1}\theta_1 - R_{b2}\theta_2 > 0
\]  

The normal operating case

The dynamic mesh force \( F \) is then

\[
F = K_\delta(t)(R_{b1}\theta_1 - R_{b2}\theta_2) + C_\delta(t)(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2)
\]

**Case 2**

\[
R_{b1}\theta_1 - R_{b2}\theta_2 \leq 0 \quad \text{and} \quad |R_{b1}\theta_1 - R_{b2}\theta_2| \leq \delta
\]

In this case, the gears will separate and the contact between the gears will be lost. Hence,

\[
F = 0
\]

**Case 3**

\[
R_{b1}\theta_1 - R_{b2}\theta_2 < 0 \quad \text{and} \quad |R_{b1}\theta_1 - R_{b2}\theta_2| > \delta
\]

In this case, gear 2 will collide with gear 1 on the backside. Then,

\[
F = K_\delta(t)[(R_{b2}\theta_2 - R_{b1}\theta_1) - \delta] + C_\delta(t)(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2)
\]

**Conclusion**

A low contact ratio spur gear transmisson model is developed. The model includes inertias of load and power source, stiffness of shaft, time-varying mesh stiffness, and damping and friction inside gear transmissions.

Governing equations of the model are derived and a linearized iterative procedure for the solution is presented. Parameter study including rotating speed, diametral pitch, applied load, damping, stiffness, and inertia will be presented in Part 2 of this article.

References
