Critical Cooling

TESTS PROVE PROPER COOLANT PRODUCES HIGHER GEAR GRINDING PRODUCTIVITY

DAVID GRAHAM AND PHILIP VARGHESE, NORTON|SAINT-GOBAIN

Selecting the correct coolant can provide numerous benefits. The purpose of using a grinding fluid is to provide lubrication and cooling that are critical to the economical production of precisely ground parts free of metallurgical defects. Additionally, it lowers abrasive cost by reducing wheel wear, aiding chip evacuation and protecting the machine from corrosion.

Inconel 718 (IN718) is the most frequently used nickel based superalloy. Some of the applications of nickel based superalloys are found in aircraft gas turbines, reciprocating engines, metal processing, space vehicles, heat treating equipment, nuclear power plants, chemical and petrochemical industries and heat exchangers (Ref. 1). Components made from this material are either ground using conventional aluminum oxide-based bonded abrasive grinding wheels or cBN superabrasives wheels. Grinding is usually performed with a grinding fluid or coolant. In order to provide the necessary lubrication and cooling capacity and achieve parts free of metallurgical defects while maintaining lower operating and abrasive costs, grinding fluids are developed with very complex formulations.

How to Select the Right Grinding Fluid

When faced with the problem of selecting the optimal grinding fluid type for grinding a specific work material, it is often very difficult to find quantifiable data on wheel performance and wheel life as a function of type of grinding fluid used. There are many types of grinding fluids available for selection. Chief among these are straight oils and water soluble oils. Straight oils can be a blend of one or more of the different base oils (paraffinic, napthenic, synthetic and vegetable) and may contain boundary and/or extreme-pressure additives such as sulfur, phosphorous or chlorine compounds (Ref. 2). While these oils provide good lubricity and rust prevention and are easy to maintain, they are also combustible and components are left with an oily film that might need to be removed before use. In the case of water soluble oils, the concentrates sold by coolant suppliers contain 40 percent or more oil and are mixed with water at a ratio of about 5% to 15% to create the metalworking fluid (Ref. 2). These fluids provide good cooling but due to bacterial growth are not as easy to maintain as straight oils. The selection of an optimal grinding fluid type for any operation will vary based on a number of parameters, including the material to be ground, abrasive type used, wheel wear, maintenance, disposal and associated costs.
When using the Klingelnberg Closed Loop for cylindrical gears, the measuring results are stored in a universal XML file. This establishes clear and easy communication between the measuring machine and machine tool. Klingelnberg Closed Loop is an open system suitable for use with any machine tool and is already available for Klingelnberg/Höfler machine software.

Klingelnberg Closed Loop – long-established proven technology for bevel gears.
Gear Up with Ingersoll!

Your most experienced source in the design & manufacture of ICI gear machining tools

Hobbing Cutters
- Segmented designs with angled screw holes for simple, accurate indexing
- Single, double and even triple-start designs

Gear Gashers
- Custom indexable roughing & finishing cutters
- Designed to your specific tooth profile

Gear Shapers
- Roughing at three to four times faster than conventional methods
The Impact of Different Fluids on Wheel Life

In order to determine the quantifiable impact of the type of grinding fluid on grinding performance and wheel life, engineers from Norton|Saint-Gobain Abrasives did a comparative study at its Higgins Grinding Technology Center in Northborough, Massachusetts. The results of the study proved that grinding IN718 in straight oil gave a 9–10 times improvement in productivity and in wheel life over grinding in water-soluble oil.

Testing consisted of grinding slots in IN-718 parts with half-inch wide wheels. Two creepfeed grinding machines were used; one with a water-soluble oil coolant (Trim VHP E812) and the other with straight oil coolant (Castrol Variocut B27). Wheel speed was constant at 8,500 surface feet per minute and coolant pressure was 175 psi at a flow rate of 55 gallons per minute. An engineered, highly porous, ceramic aluminum-oxide-based grinding wheel specification, TG280-H20VTX2, from Norton Abrasives was tested and high-pressure scrubber nozzles were used to keep the wheel face clean. The TG2 grinding wheel used in this test consists of a shaped TG grain made by replacing post-sinter crushing with a pre-sinter extrusion process (see Figure 1). The resulting needle shaped grains, designated TG and TG2, have extreme aspect ratios (TG = 5:1, TG2 = 8:1). Not only do these grains maintain a high toughness, but they also have a very low packing density. Typical blocky grains will pack to about 50% by volume whereas the extruded grain with an aspect ratio of 8:1 has a packing density closer to 30%. Wheels made with this grain have a very high level of permeability/porosity and excellent coolant carrying capacity. In terms of chip modeling, the high aspect ratio presents a shape factor comparable to a much larger blocky grain, which in turn creates a much larger chip and lower specific cutting energy. The combination of all these factors makes the TG family of grains unusually suited to high stock removal rates when grinding superalloys (Ref. 3).

Figure 2 shows a picture of the test setup used for the grinding test in oil. All grinds were creepfeed in a non-continuous dress mode. Testing was stopped if visual burn was evident on the part. Testing began with straight oil coolant and depth of cut per pass was set at 0.100” (2.5 mm). Work speed began at 10 inches per minute and increased until it reached 180 inches per minute (254–4,572 mm/min). A minimum stock volume of 2 in³ was removed under each condition. With the oil coolant there was never any evidence of burn/thermal damage. Subsequent metallurgical analysis confirmed no burn, and bent grains on the part did not extend more than 0.001” (25 µm) below the surface. The test with WSO coolant began using the same 0.100” depth of cut used in the oil test. However, burn occurred at the first feed rate of 10 inches per minute (254 mm/min). Therefore, an alternate strategy was adopted in which a specific removal rate was set and work speeds were varied to determine when burn would occur. To keep the specific removal rate constant, the depth of cut was decreased as the work speed was increased. Specific removal rates of 1.0, 2.5 and 3.125 in³/
The USACH 100-T4 CNC ID/OD precision grinding machine is ideally suited for a variety of different industries. Combining ID, OD, face, taper, radii and contour grinding in one chucking. Thanks to the generous cross axis travel of 500 mm/19.68” (X-Axis), the machine processes parts up to 450 mm/17.7” in diameter at a weight capacity up to 272 kg/500 lbs.

This machine offers a variety of features and options like:
- four motorized grinding spindles
- high precision measuring probe
- latest torque motor based B-Axis design
- automation
- high precision hydrostatic work head swivel B1-Axis
- Siemens or Fanuc control

min/in (10, 25 and 31 mm³/sec/mm) were chosen and table speeds between 6.1 and 300 inches per minute (2.6 mm/sec –127 mm/sec) were tested.

Figures 3 and 4 show the graphs of specific power and grinding energy versus volumetric material removal rate. Specific grinding energy, which is defined as the energy required to remove a unit volume of material, is a measure of the efficiency of the grinding process. There is no difference observed in both these graphs when grinding IN718 with the TG2 wheel in oil vs. water soluble coolant.

Figure 5 shows a graph of G-Ratio vs. Volumetric Material Removal Rate. G-Ratio, which is an indicator of wheel life, was significantly higher when grind-
ing in oil coolant. Because rapid wheel wear was observed, it wasn’t practical to continue increasing removal rates when grinding in water soluble coolant beyond 5 in³/min/in (50 mm³/sec/mm). However when grinding with oil coolant, removal rates as high as 18 in³/min/in (180 mm³/sec/mm) with minimal impact on G-ratio are possible. This illustrates higher productivity, shorter cycle times and increased wheel life when grinding in oil.

When grinding with WSO, there were certain operating conditions which led to the occurrence of burn on the work pieces, and work speeds were varied to reduce or eliminate burn. As illustrated in Figure 6, at a constant volumetric stock removal rate, as the work speed was increased (and depth of cut decreased), the risk of burn diminished. We would therefore expect that for higher work speeds, the specific grinding energy would be lower. When thinking of the grinding zone as a moving heat source, as the rate increased, the time the source is in contact with any point on the part decreases, and thereby limits the amount of heat that is transferred to the part.

Figure 7 shows a graph where the specific grinding energy for each removal rate is plotted with respect to the work speed.

Figure 7 Graph shows where the specific grinding energy for each removal rate is plotted with respect to the work speed.

to plowing and sliding interactions in the grinding zone. It should be noted that this strategy for alleviating burn was only used in grinding with water-soluble coolant.

In summary, the results from the comparative test demonstrates the quantifiable impact of the type of grinding fluid (straight oil coolant, water soluble coolant) on the grinding performance and wheel life, when grinding IN718 alloy with a modern aluminum-oxide-based ceramic grinding wheel. Both in terms of achieving higher productivity and wheel life, straight oil coolant outperforms...
water soluble oil coolant. However, the actual performance and G-ratio values will be different for each grinding wheel and work material combination. Additionally, the reason for certain operating conditions causing the occurrence of burn on the components when grinding in water soluble coolant versus oil coolant needs to be investigated with additional testing and thermal modeling, taking into account the dissimilar properties of the two types of coolant.

References

For more information:
Norton | Saint-Gobain
Phone: (508) 795-5626
www.nortonabrasives.com

Mahr Inc.
DIGITAL MICROMETER INTEGRATES DATA TRANSMISSION

Mahr wireless data transmission capability is now integrated within its new digital micrometer Micromar 40 EWRi. The new 40 EWRi is the latest addition to Mahr’s Integrated wireless family of products, including digital calipers, Indicators and depth gages, which allow users to measure faster, more easily and more reliably. Measurement data is transferred to an i-Stick on a computer without any interfering data cables, and MarCom software makes data acquisition simple: just take a measurement and transmit measuring data directly into MS Excel or via a keyboard code into any Windows program or existing SPC application.

Micromar 40 EWRi is the first digital micrometer with large 10 mm digits on a high contrast digital display, making for safe fatigue-free reading of the measured values. It offers an easy to understand tolerance display and additionally displays warning limits.

The reference system in the Micromar 40 EWRi makes handling the micrometer very simple since the zero position is set only once. This setting remains stored for all further measurements. Also, a new “Hold” function (digital lock) allows measured values to be “frozen” so they can be easily read.

Highly precise, the Micromar 40 EWRi micrometer is equipped with a state-of-the-art inductive measuring system that exceeds international standards. Class IP65 protection against dust, coolants and lubricants makes the Micromar 40 EWRi ideally suited for use in diffi-
cult environments in the manufacturing environment.

The MarConnect integrated wireless interface is active as soon as the i-stick is plugged in, and each micrometer/caliper/indicator is identified by signal coding in the MarCom software so there is no confusion as to signals. The micrometer confirms whether the transmitted data was transferred correctly, or whether the operator is in the receiving area of the i-Stick receiver.

Since the wireless data transmitters are built into the micrometer/caliper/indicator, no interface boxes or additional batteries are required. Plus, integrating the transmitters into the gage electronics makes the units extremely energy efficient and can extend battery life up to 50% longer than competitive systems.

For more information:
Mahr Inc.
Phone: (800) 343-2050
www.mahrexactly.com

Haas Multigrind
CA AND CB MACHINES UTILIZE HIGH-CAPACITY GRINDING WHEEL SHELF MAGAZINES

All Haas Multigrind grinding centers are available with an automatic wheel changer. This feature enables Haas customers to combine multiple high-precision, complex grinding and milling operations into a single part clamping and single machine cycle. Users can realize significant improvements in overall part quality and significant reductions in overall throughput time and cost.

Now Haas customers can take another leap in productivity with the new high-capacity “shelf magazine.” On the Multigrind CB grinding machine, the new Haas shelf magazine (2,000 × 2,400 × 3,200 mm, L × W × H) offers space for 65 grinding wheels of up to 300 mm diameter. On the Multigrind CA grinding machine, the shelf magazine can be equipped with up to 70 grinding wheels of up to 250 mm diameter. The magazine can also hold up to 20 coolant nozzles.

The new high capacity magazine enables customers to add more operations on a single part AND to dramatically reduce change-over time between different parts by loading wheels and tools for multiple part numbers in the magazine.

The Haas Horizon programming system maintains locations, dimensions

Material flow/CS manager and world-class gearhead

Open-minded. It’s how Chad and his team address your gear needs. They know there are multiple variables that can improve your parts. Their job is to explore the possibilities and zero-in on the raw materials, castings, heat treatment sources, etc. that will help us make your precision gears more cost-effectively ... then deliver them 100% on time. We’ll go the extra mile for you. Let’s talk.

Chad Carrico
Schafer A-Team member

Material flow/CS manager and world-class gearhead

SCHAFER INDUSTRIES
schafergearheads.com
and life information of all wheels and
tools in the magazine in addition to
programming the machine’s grinding
and automation functions.

Even with much more wheel capac-
ity, tool change time on the new shelf
magazine is only 10 seconds.

“We’re not aware of any other tool
magazine that offers as much space
and flexibility,” says Dirk Wember,
Haas Multigrind’s president.

The system was first unveiled to the
general public in April 2017 at Haas’s
GrindDate, their in-house trade fair.
In June is created strong interest
when presented at the Paris Airshow.

For more information:
Haas Multigrind LLC
Phone: (574) 268-0053
www.haas-schiefmaschinen.de/en

KISSsoft
UPDATES SYSTEM
CALCULATION WITH
KISSSYS

A function in KISSsoft Release 03/2017
enables you to evaluate the reliability of
gear units, individual gears and rolling
bearings. (New KLR module)

For gears, the reliability is evaluated for
tooth root fracture and pitting, where-
as for rolling bearings, the reliabil-
ity is determined using the ser-
vice life method specified in
ISO 281 or ISO 16281, and
the results are displayed as
a graphic. The calculation
is performed according to
Bernd Bertsche. The well-
established 3-parameter
Weibull distribution meth-
od is used as the statistical
model.

The way in which the model tree struc-
ture is handled in KISSsys has also been
improved. Elements can now be deleted,
renamed, copied, cut out and pasted in.
All the references involved in your model
are also displayed clearly. All the paths in
the structure can be updated as needed.
This has the advantage that there are no
limitations on the changes you can make
to the model tree structure at a later date.

For more information:
KISSsoft USA LLC
Phone: (815) 363-8823
www.kisssoft.com

Marposs Tool Monitoring Solutions

Safeguard your hobs and
maximize tool life based on
real tool condition data.

Increase hob life 40-60%
while protecting from
costly damage.

Developed specifically
for gear cutting using
Artis technology.

www.marposs.com/gearcutting
248-364-2734 or 1-888-627-7677