The new Samputensili SG 160 SKY GRIND is based on a ground-breaking concept that totally eliminates the need for cutting oils during the grinding of gears.

By means of a skive hobbing tool, the machine removes 90% of the stock allowance with the first pass. Subsequently a worm grinding wheel removes the remaining stock without causing problems of overheating the workpiece, therefore resulting in a completely dry process.

This ensures a smaller machine footprint and considerable savings in terms of auxiliary equipment, materials and absorbed energy.

The innovative machine structure with two spindles actuated by linear motors and the use of more channels simultaneously ensure a chip-to-chip time of less than 2 seconds.

This revolutionary, compact and eco-friendly machine will let your production soar and improve your workers' wellbeing.

Contact us today for more information!

Phone: 847-649-1450
5200 Prairie Stone Pkwy. | Ste. 100 | Hoffman Estates | IL 60192
features

22 Spin City
Grinding wheel technology focuses on speed, efficiency and time savings.

28 Why Select Gear Grinding with CBN?
Process offers lower costs, environmental benefits, greater efficiency.

34 Admire its Purity
As gear manufacturing techniques become more precise and demanding, there is a growing demand for cleaner, more high-quality steel.

technical

64 Influence of Grinding Notch on Gear Bending Strength Rating
Using ISO Standard 6336-3 to calculate for grinding notch.

74 The Pentac Mono-RT
How it works.

84 Full Contact Analysis vs. Standard Load Capacity Calculation for Cylindrical Gears
Local tooth contact analysis/standard calculation to determine load capacity for pitting, tooth root breakage, micropitting, and tooth flank fracture failure modes.
FIRST BUILT IN AMERICA IN 1896.
STILL BUILT BY AMERICANS IN 2018.

THE ORIGINAL FELLOWS GEAR SHAPER

www.bourn-koch.com
machinesales@bourn-koch.com
815-713-2367
Spiral Bevel Gears

- Spiral & straight bevel gear manufacturing.
- Commercial to aircraft quality gearing.
- Spur, helical, splined shafts, internal & external, shaved & ground gears.
- Spiral bevel grinding.
- Midwest Transmissions & Reducers.
- ISO compliant.

Midwest Gear & Tool, Inc.
15700 Common Rd., Roseville, MI 48066
Tel: 586.778.1300 mwgear@midwestgear.net

GEAR CUTTING TOOLS
MADE IN SWITZERLAND

SCHNYDER
GEAR CUTTING SOLUTIONS
60 YEARS OF TOP TECHNOLOGY

US Distributor HANIK CORPORATION
PHONE 830-986-4800
FAX 830-986-4904
www.hanikcorpor.com
email: info@hanikcorpor.com
ph: 011-41-32-344-0400 • fax: 011-41-32-344-0404 • www.schnyder.com • mail@schnyder.com

06 GT Extras
Tune in to the latest episode of Revolutions; plus, check out other exclusive online content.

09 Publisher’s Page
Free Knowledge Served Daily.

10 Product News
Gleason hobbing machine with integrated chamfer hobbing; Liebherr gear grinding machine; Forest City Gear adds metal alloy analysis to gear inspection.

90 Industry News
Kapp Technologies, Penta Gear and Koepfer America technical sales collaboration; Gleason comprehensive training program catalog; other news and announcements.

93 Calendar of Events
December 3-6: CTI Symposium2018, Berlin; December 4-6: Power-Gen International 2018, Orlando, Florida; December 5-7: AGMA Steels for Gear Applications, Clearwater Beach, Florida.

94 Advertiser Index
Contact information for companies in this issue.

95 Subscriptions
Fill out the form to continue receiving Gear Technology.

96 Addendum
The LC 280 α gear hobbing machine is the perfect entry into gear cutting. It offers maximum flexibility thanks to a diverse range of workpieces, well-known Liebherr quality, and low acquisition cost.

The machine with a new hob head and perfected chip removal is ideal for the supplier business, especially because of the fast delivery time of approx. three months and high productivity.

- Machining workpieces with max. 280 mm diameter and shafts with a length of up to 500 mm
- Wet and dry machining possible
- Dry machining with stainless steel housing available
- Newly developed and optimized hob head for larger tools in diameter and length
Event Spotlight: Power-Gen International 2018
Displaying a wide variety of products and services, Power-Gen International represents a horizontal look at the industry with key emphasis on new solutions and innovations for the future.

Stay Connected
Join the Gear Technology Facebook group at www.facebook.com/groups/210890932629794/
Follow us on Twitter twitter.com/#/Gear_Technology
Connect with us on LinkedIn www.linkedin.com/groups/Gear-Technology-Magazine-3893880
Subscribe Online www.geartechnology.com/subscribe.htm

GT Revolutions
Find original video content prepared by our editors, along with the help of gear industry experts from around the world including the latest from IMTS 2018: www.geartechnology.com/tv/#REV2018

Gear Talk with Chuck
Catch up on gear topics with resident blogger Charles D. Schultz. Recent topics include upgrading gearboxes, repairing and rebuilds and 3D printing. Visit the website below for the latest entries:
www.geartechnology.com/blog/

RANDALL PUBLICATIONS LLC
1840 JARVIS AVENUE
ELK GROVE VILLAGE, IL 60007
(847) 437-6604
FAX: (847) 437-6618

EDITORIAL
Publisher & Editor-in-Chief
Michael Goldstein
publisher@geartechnology.com
Associate Publisher & Managing Editor
Randy Stott
wrs@geartechnology.com
Senior Editor
Jack McGuinn
jmcguinn@geartechnology.com
Senior Editor
Matthew Jaster
mjaster@geartechnology.com
Associate Editor
Alex Cannella
alex@geartechnology.com
Editorial Consultant
Paul R. Goldstein
Technical Editors
William (Bill) Bradley, Robert Errichello, Octave Labath, PE., John Lange, Joseph Mihelick, Charles D. Schultz, PE., Robert E. Smith, Mike Tennutti, Frank Uherek

DESIGN
Art Director
David Ropinski
dropinski@geartechnology.com

ADVERTISING
Associate Publisher & Advertising Sales Manager
Dave Friedman
dave@geartechnology.com
 Materials Coordinator
Dorothy Fiandaca
dee@randallpublications.com
 e-Marketing Specialist
Matthew Stott
matthewstott@geartechnology.com
China Sales Agent
Eric Wu, Eastco Industry Co., Ltd.
Tel: (86)(21) 52305107
Fax: (86)(21) 52305106
Cell: (86) 13817160576
eric.wu@eastcoetec.com

CIRCULATION
Circulation Manager
Carol Tratar
subscribe@geartechnology.com
Circulation Coordinator
Barbara Novak
bnovak@geartechnology.com

RANDALL STAFF
President
Michael Goldstein
Accounting
Luann Harrold

Techical Editors
William (Bill) Bradley, Robert Errichello, Octave Labath, PE., John Lange, Joseph Mihelick, Charles D. Schultz, PE., Robert E. Smith, Mike Tennutti, Frank Uherek

GT extras

Hofler Gear Grinding
Cylindrical gear manufacturers all around the world appreciate the advantages and productivity of the RAPID 1250 XL for workpiece diameters of up to 1,250 mm.

Gear Talk with Chuck
Catch up on gear topics with resident blogger Charles D. Schultz. Recent topics include upgrading gearboxes, repairing and rebuilds and 3D printing. Visit the website below for the latest entries:
www.geartechnology.com/blog/

Event Spotlight: Power-Gen International 2018
Displaying a wide variety of products and services, Power-Gen International represents a horizontal look at the industry with key emphasis on new solutions and innovations for the future.

Stay Connected
Join the Gear Technology Facebook group at www.facebook.com/groups/210890932629794/
Follow us on Twitter twitter.com/#/Gear_Technology
Connect with us on LinkedIn www.linkedin.com/groups/Gear-Technology-Magazine-3893880
Subscribe Online www.geartechnology.com/subscribe.htm
MTB RECONTROLS
Form Grinding Technology

New Grinding Technology, which includes Form Grinding Conversational Software, On-Board Inspection, Wheel Dressing, and Automatic Setup Adjustments can be applied to either a rebuilt or recontrolled grinder. If you have a form grinder that requires new controls, these new technological features can be added with the new recontrol, extending the life of a grinder very cost-effectively. This MTB Form Grinding Technology for the Retrofit market comprises of the following:

- **Form Grinding**
 - Spur and Helical
 - Single or double flank grinding
 - Lead & Profile modifications

- **Wheel Dressing**
 - Tip relief straight/parabolic
 - Profile Crown
 - Root radius/Fillet
 - Profile point-by-point modifications
 - Independent data for Left/Right flanks

- **On-board Inspection**
 - Profile, Lead, Index
 - Tooth size (thickness, DOP, span)
 - Stock division
 - AGMA/DIN/ISO tolerance determination
 - Probe calibration, when needed, does not require setup interruption
 - Independent data for Left/Right flanks

Visit MachineToolBuilders.com for details.
Contact us at 815.636.7502 or info@machinetoolbuilders.com

An engineer owned company built on complete customer satisfaction. We can handle all of your machinery needs.

+ New machinery dealer of brands like Burri, Donner + Pfister, and Diablo Furnaces
+ A world class MTB rebuild of your existing machine
+ A custom MTB recontol of your existing machine
+ We carry a limited inventory of rebuilt and recontrolled machinery
+ On-site or off-site service and repair
Reimagined Super Skiving Technology Makes Flexible, High-Volume Internal Gear Manufacturing Within Reach.

The all new MSS300 brings flexible, high-volume internal gear skiving to internal gear manufacturing. With revolutionary Multi-Blade skiving tools, it produces three to five times more parts than conventional tools. Additionally, the MSS300 offers greater flexibility by cutting restrictive geometries and even allowing parts previously manufactured in two parts to be cut in one Super Skiving process. To learn more about how the MSS300 is ready cut up your competition visit www.mitsubishigearcenter.com or contact sales at 248-669-6136.
Technical articles have been the hallmark of *Gear Technology* since we first started publishing, more than 34 years ago, in 1984. One of the achievements I'm most proud of is the development of the **GT LIBRARY** at geartechnology.com, where you can find every single one of those articles, going all the way back to the beginning.

In those early days, magazines were produced mechanically. Pages were printed from film, not digital files. The PDF didn’t even exist. So, in order to make all or our content available to you, we had to go back into our archives and scan the old issues. We had to create separate files for each article, tag the articles with keywords and enter them in a database. Then we built a search engine to help you find those articles.

Sure, at most of your companies there’s probably some grizzled veteran who has every issue of *Gear Technology* on a shelf somewhere. Maybe he’s even nice enough to let you browse through his collection (as long as you put everything back where it was). But if you’re looking for something on a specific topic, it’s a lot easier to go to the website and just type in “carburizing” or “bevel gear grinding.”

Building the **GT LIBRARY** took a lot of work over several years, but it was worth it.

One of the reasons I’m most proud of that work is that we did it without any regard for financial gain. It was our gift to the industry—a repository of knowledge that is accessible to everyone, for free, anytime they want it. You can download any of our articles any time you want. And the only thing we get from those downloads is the satisfaction of having served the industry.

For me, that’s always been enough.

In fact, that’s the main reason I started *Gear Technology* in the first place. I saw a lot of really good technical content being produced, all over the world, on the subject of gears. Unfortunately, that content was only made available to a tiny, select few: those who attended the technical conferences where they were presented. None of that information was ever widely disseminated, at least not until we came along. We’ve always tried to choose the best of what was presented around the world and bring it to you.

That tradition continues with this issue as well. We have articles from several authors whose contributions to the knowledge base of the gear industry spans decades. They’re some of the most prolific researchers and developers of the technology all of you rely upon. So don’t miss out on any of these:

- **The Influence of a Grinding Notch on the Gear Bending Strength Rating**, by Dr. Ulrich Kissling and Ioannis Zotos (p. 64)
- **PentacMono-RT: High-Performance Face Milling Cutter Heads**, by Dr. Hermann J. Stadtfeld (p. 74)
- **Full Contact Analysis vs. Standard Load Capacity Calculation for Cylindrical Gears**, by Dr. Michael Otto, Uwe Weinberger and Dr. Karsten Stahl (p. 84)

In addition to all of our technical content, we also do our best to bring you the type of practical information you can use. This issue is also our annual Buyers Guide issue, so if you’re looking for a supplier in the gear industry, your search starts on page 44.

On top of all that, our editors are always talking to the providers of technology in our industry, and you can read their articles to find out about the latest trends in grinding wheels (p.22) and gear steel (p.34) in this issue.

We’re proud to be “The Gear Industry’s Information Source” as well as its public library, and we’re going to continue building on the industry’s library of knowledge as long as we’re able.

But we need your help. Although you don’t need a library card to access the **GT LIBRARY**, we do need you to check in once in a while—and by that I mean we need you to subscribe. The only way we’re able to do all of this is with the support of our advertisers, and the only reason they’re willing to provide that support is because they know we’re reaching the gear industry.

So even if you think you’ve already done so recently, please go to www.geartechnology.com/subscribe.htm and fill out the form. For most of you, all you have to do is enter your e-mail address and confirm the information that’s already in our system. Give us 15 seconds, and we’ll give you two years.

It’s really important that you do so right away, because your help will allow us to keep the **GT LIBRARY** open and free forever.
The new Genesis 160HCD Hobbing Machine for cylindrical gears integrates a newly developed process for chamfer cutting. Chamfer Hobbing ensures precise chamfers according to customer specification — with minimal tool cost.

The new Gear Hobbing Machine with Integrated Chamfer Hobbing is based on the extremely successful Genesis Machine Series with hundreds of installed machines globally. With the new Genesis 160HCD, Gleason integrates a newly developed chamfer cutting process which is executed in parallel to gear hobbing. Chamfer Hobbing provides very short cycle times and minimal tool cost per workpiece. This new chamfering process ensures burr-free gear faces without the requirement of additional, subsequent deburring steps. Likewise, no measurable burrs are created on tooth flanks. The workpiece is ideally prepared for the subsequent hard finishing process.

Chamfer Hobbing is a very efficient process due to the ability to shift the chamfer hobs for maximum tool life. Compared to special deburring tools, chamfer hobs can be easily reconditioned, keeping tool cost under control and cost-per-piece at a minimum.

Ideally suited for the highly economical manufacture of cylindrical gears up to a module of 4 mm and an outside diameter of 160 mm, the 160HCD can be optionally extended to a workpiece diameter of 210 mm. Its updated part loading concept with a fast gantry system minimizes part handling and setup times, thanks to its complete integration into the machine’s control software.

The new 160HCD is the latest addition to the Genesis Series of Hobbing Machines offering another method to chamfered gears precisely and economically: Whether as a dedicated hobbing machine or integrated with different chamfering solutions available through Gleason — a Genesis Gear Hobbing Machine can satisfy a wide range of customer requirements.

For more information:
Gleason Corporation
Phone: (585) 473-1000
www.gleason.com

Based on its LGG 280 generating grinding machine, Liebherr recently presented the larger LGG 400 M model at IMTS in Chicago.

The new Liebherr LGG 400 M was developed with an eye towards aerospace and job shop customers. It fits into the same footprint as the smaller LGG 280, but is well-suited to machining long shafts because the travel of the main and counter column has been extended.

“Our users can utilize a variety of grinding heads for internal and external gears,” says Oliver Kraft, manager development and design of gear cutting machines at Liebherr-Verzahntechnik GmbH. “They can perform generating grinding with high productivity on workpieces up to 280 millimeter in diameter or profile grinding on even larger components up to 400 millimeters. This means even greater flexibility than its sister machine.”

Ideal for long shafts
The machine concept came about from the requirements of the market. Long shafts with small diameters have come into demand, required by customers in the aerospace and job shop industries—often for short runs. Liebherr offers an optional crane for optimal handling of large parts. “We have ergonomically adapted the machines overall,” Kraft explains. “Due to the height, we have incorporated fold-out stair steps so
NEW: SHOP FLOOR CMM SF 87

800 x 700 x 700 mm Measurement Volume

- Suitable for Factory and Manufacturing Use
- Outstanding Price-Performance Ratio
- Modern Machine Design and Construction
- Flexible Probe Systems
- Automation Integration
- Small Footprint

#morepartsfaster
Forest City Gear

ADDS METAL ALLOY ANALYSIS TO GEAR INSPECTION CAPABILITIES

Forest City Gear can now perform fast, comprehensive analysis and verification of metal alloys for quality assurance and control using its new Thermo Scientific Niton XRF Analyzer.

The Niton XRF Analyzer enables Forest City Gear to quickly and easily verify that the metal alloys used in barstock and/or near net shape blanks received from outside suppliers meet specifications before gears are produced. It can also be used to confirm that the chemical composition of metal alloys after heat treat meets requirements. The Analyzer can even be used to verify the plating thickness over metal to ensure that plating performed by outside vendors conforms to specification.

The lightweight, handheld and purpose-built construction of the Niton Analyzer makes it ideal for application in a wide range of environments, from shop floor to even outdoors.

For more information:
Forest City Gear
Phone: (815) 623-2168
www.forestcitygear.com

workers are better able to reach the working area. Large viewing windows provide the operator with the best possible overview of the working area and the process.”

For more information:
Liebherr Gear Technology
Phone: (734) 429-7225
www.liebherr.com
The next level of Skiving:

- PITTLER SKIVING technology for high-precision gearings on hardened or green parts
- Flexible production of inner and outer gearing in small, medium-sized and large series
- Maximum productivity thanks to complete machining for parts with a diameter of up to 16 inches

Curious to learn more?
CONTACT US:
DVS Technology America Inc.
☎ 734-656-2080 Sales.america@dvs-technology.com
www.pittler.de | www.dvs-technology.com
Recently at IMTS in Chicago, GMTA introduced a new technology (patent-pending since May, 2018) by Profilator called micro-finishing via scudding. Micro-finishing takes place after the hard-scudding process has been completed. The process will take an already high quality, hard-scudded part and make it better in terms of surface finish. While the overall AGMA, JIS or DIN quality may not change, the surface roughness of the gear teeth will be dramatically improved. It should also be noted that superfinishing gear processes such as this have been shown to reduce friction, increase pitting resistance and increase the life of gears. Additionally, this technology from Profilator GmbH & Co. KG is a completely dry machining process and requires no cutting fluids or MQL technology.

The hard-scudding time for a standard automotive ring gear (approx. 125–140 mm ID) is 37–52 seconds (25–40 seconds cutting/12 seconds load-unload-stock division time). In the company’s testing, they are seeing that the micro-finishing process takes approximately 20 seconds on a standard automotive size ring gear. That being said, they estimate that the total cycle time for finishing a ring gear via hard-scudding and micro-finishing would be approximately 64 seconds, if completed sequentially. As they continue to test and develop the micro-finishing process, GMTA feels that the time estimate noted above could be optimized to decrease the hard-scudding and micro-finishing cycle by 10%, thus keeping the total cycle time under one minute for all automotive ring gears.

The market is turning toward hybrid and e-Drive technology at a rapid pace. In these applications, noise (or lack of noise) is a very important consideration. The gears in these transmissions rotate at extremely high velocities and that increases the possibility of gear noises being perceptible to the human ear. As previously stated, the micro-finishing technology addresses noise sensitive applications and is aimed at making a quieter gear. The goal is to increase the quality of the surface roughness of the gear tooth flanks. The Rz measurements do not exceed 0.8 µm in either lead or profile direction.

The micro-finishing process utilizes a high quality diamond plated tool. This tool concept was designed and developed by Profilator GmbH & Co., located in Wuppertal, Germany. This unique process is designed to remove only a small amount of part material where the
From the 115 employees, 77 families, 345 children and grandchildren, 292 parents and grandparents and 158 very grateful pets that your business has supported throughout the year.

At Forest City Gear, our number one core value is ‘Families Matter, and Always Will.’ From our families to yours...

Merry Christmas!

Excellence Without Exception

815.623.2168 | www.forestcitygear.com
This subtle but powerful bond characterizes the NQ3 grinding wheel for Saint-Gobain Abrasives, ensuring that operators enjoy less fatigue and downtime while maximizing grinding output. Designed for retaining the grains long enough during and after grain fractures, this unique bond was produced through a precisely engineered iron, sulfur, and carbon steel at five minute intervals. The result is a grinding wheel that can remove almost twice the amount of metal compared to conventional wheels while providing a significant increase in grinding output. The proprietary grain along with a tougher bond system containing a combination of fillers and bonding agents allows for better mix quality in manufacturing, significantly increasing grinding output and reducing maintenance costs.

Test results conducted with NQ3 and other Saint-Gobain NQ3 grinding wheels have shown a substantial decrease in downtime and improvement in user comfort, making it an ideal choice for applications requiring high performance and operator well-being.

The NQ3 wheels are offered in 12 range from 4” × ¼” × 3⁄8”, to 9” × ¼” to 7⁄8” and can be used in Type 27 SKU’s for foundry applications, as well as Type 28 all-purpose and two all-purpose grinding applications. All products are currently in stock. For more information, please visit www.saint-gobain-northamerica.com or contact us at (610) 893-6000.

Surface Roughness “Hard Scudding®” Only

<table>
<thead>
<tr>
<th>R-PFili (Profile Measurement)</th>
<th>Ausw. – L</th>
<th>λc</th>
<th>Ra</th>
<th>Rz</th>
<th>Rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.14 µm</td>
<td>0.8 µm</td>
<td>0.18 µm</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.12 µm</td>
<td>0.7 µm</td>
<td>0.13 µm</td>
</tr>
<tr>
<td>R-PFili (Lead Measurement)</td>
<td>Ausw. – L</td>
<td>λc</td>
<td>Ra</td>
<td>Rz</td>
<td>Rms</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.38 µm</td>
<td>2.0 µm</td>
<td>0.42 µm</td>
</tr>
<tr>
<td>L-PFili (Profile Measurement)</td>
<td>Ausw. – L</td>
<td>λc</td>
<td>Ra</td>
<td>Rz</td>
<td>Rms</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.15 µm</td>
<td>0.8 µm</td>
<td>0.19 µm</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.11 µm</td>
<td>0.6 µm</td>
<td>0.12 µm</td>
</tr>
<tr>
<td>L-PFili (Lead Measurement)</td>
<td>Ausw. – L</td>
<td>λc</td>
<td>Ra</td>
<td>Rz</td>
<td>Rms</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.33 µm</td>
<td>1.7 µm</td>
<td>0.36 µm</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.8mmX5</td>
<td>0.25 µm</td>
<td>1.3 µm</td>
<td>0.28 µm</td>
</tr>
</tbody>
</table>
resulting part provides the user a great benefit, in terms of surface quality on the gear teeth as well as noise reduction. This fine finishing process is completed using the high quality industrial diamond tool (noted above) with an average particle size of 45 µm. During the process, the tool will remove approximately 20 µm of stock per flank which will not largely alter the gear geometry but drastically improve the surface finish on the gear teeth. Due to the relatively small amount of stock removal, it is believed that the tool life will be very good (testing continues to confirm this fact).

The micro-finishing technology can be applied in several ways on Profilator equipment. It can be a stand-alone process on a scudding machine, it can be a sequential process where hard-scudding and micro-finishing are completed utilizing a tandem tool set-up or it can be applied on a double spindle Profilator scudding machine, where the processes of the hard-scudding and micro-finishing can be completed simultaneously. In many cases, the part geometry will define the optimal process for the user.

For more information:
GMTA
Phone: (734) 973-7800
www.gmtamerica.com

Class I accuracy
Granite column
Thermally compensated
High capacity table bearing
Linear drives
Motorized tailstock
Universal analysis software
Free unlimited software support
“Closed loop” corrections to production machines
Probe changer
Quick change of tooling

Made in USA

KAPP NILES Metrology | Dayton
info@kapp-niles.com www.gearinspection.com (937) 660-8182
The L.S. Starrett Co. has introduced its DFC and DFG Series of Digital Handheld Force Gages. Depending on the series, advanced automatic testing can be attained with the DFC Force Gage controlling a Starrett FMM Digital Force Tester, or basic testing can be performed using the DFG gage.

The Starrett DFC and DFG Digital Force Gages are part of the new Starrett L1 line of entry level digital force measurement solutions. Optimized for production and quality control testing, the versatile, innovative architecture of the Starrett L1 system is designed for fast, easy-to-use, reliable and repeatable operation.

Starrett DFC and DFG Digital Force Gages feature an easy-to-view high-resolution OLED color backlit display and auto-off function. A primary and secondary window shows test results, and out-of-tolerance results display in red. A simple multi-function keypad has softkeys that are programmable to the users’ most repetitive functions. Adjustable sampling rates help capture peak loads, and filters can be applied to peak and display values. The Starrett L1 Digital Force Gages’ battery life provides over 30 hours of continuous operation and have a USB port for transmitting data to a computer. The gages have a cast aluminum housing with a comfortable grip design for handheld testing, and a metric threaded top post enables screw-on attachments and clevis adapters that fit hundreds of Starrett test fixtures.

“Whether for simple, basic economical testing via handheld gaging, or more advanced testing when mounted on our L1 stands, our innovative Digital Gages provide the ultimate solution in force measurement versatility,” said Emerson Leme, head of metrology division at Starrett.

EXCEL-LENCE AT WORK

EXCEL CNC RETROFITS – SMART MOVE!

Your best investment. We’re now restoring outdated gear machines to like-new condition – and saving our customers thousands of dollars vs. a new machine purchase. With our exceptional engineering and in-house machining and grinding capabilities, EXCEL is the ‘perfect fit’ for CNC retrofits.

Circa ’80s shaper and hobber recently retrofit with powerful new FANUC CNC for a major aerospace manufacturer.

Ready to Excel? Contact:

815.623.3414 / www.excelgear.com

[www.geartechnology.com]
Swiss Precision Gear Grinding

- cylindrical symmetric and asymmetric gears
- fine or polished ground gears
- twist-free gears or gears with controlled twist
- non-involute gears (cycloid gears)
- tapered gears

Reishauer AG, Switzerland
www.reishauer.com

Reishauer Corporation, Elgin / USA
DFC Digital Force Gages
The DFC Series is a revolutionary concept for force measurement via a handheld force gage. The DFC may be used as an advanced digital force gage and controller with Starrett FMM Force Testers, or as an advanced digital force gage with Starrett MTL and MTH Manual Force Testers. The DFC Gage can serve as a universal interface where the user tests and can configure load limits, distance limits, break limits, crosshead travel direction, crosshead speed and more. The DFC features a precise measurement accuracy of 0.1% full scale with internal data sampling at 25KHz. Display resolution is 10,000:1 and the DFC features Bluetooth, USB and RS-232 communications plus digital I/O.

DFG Digital Force Gages
The DFG Series is a basic force gage that measures force at an accuracy of better than 0.2% full scale. It is ideal for basic handheld tensile and compression testing. Test setup and operation is fast, efficient and easy. The DFG display shows the test direction and dynamic load during testing. Results are displayed at the completion of testing, including “Pass-Fail” when tolerance is applied. The gage will display statistics when results are saved to the gage’s internal memory and it can store up to 50 test results in local memory.

Both the DFC and DFG Digital Force Gages are supplied with a complete accessory kit and carrying case that includes hook, notch, chisel and flat attachments, a chisel and point adapter, a 6” extension rod and a NIST-traceable certificate of calibration.

For more information:
L.S. Starrett Company
Phone: (978) 249-3551
www.starrett.com/force

Kennametal
RELEASES LATEST HELICAL MILLING CUTTER

Kennametal recently released its newest helical milling cutter, the Harvi Ultra 8x.

Using a 95 mm (3.74 in.) axial depth of cut, 20 mm (0.78 in.) radially, and a feedrate of 423 mm/min (16.65 ipm), the 80 mm (3.15 in.) diameter Harvi Ultra 8x helical milling cutter from Kennametal recently worked through a difficult aerospace superalloy. Tim Marshall, senior global product manager for indexable milling, has tested the Harvi Ultra 8x with a variety of customers, pushing the limits of the new cutter on everything from 15-5 PH to cast iron to Aermet 100 (high strength steel) and seeing outstanding results with each.

“Kennametal developed the Harvi Ultra 8x to meet two distinct needs,” Marshall says. “The first came from the aerospace industry, which thanks to the large numbers of aircraft being built today requires the highest metal removal rates possible but still achieving excellent tool life. At the same time, machine tool builders and users alike are asking for tools able to withstand higher cutting speeds but generate lower machining forces, so as to reduce wear and tear on machine components during extreme cutting conditions. The new HARVI Ultra 8x does all that, and a lot more besides.”

Marshall said the Harvi Ultra 8x was designed to predictably remove 20 cubic inches (328 cm³) of Ti-6Al-4V each minute while attaining 60 minutes of tool life per cutting edge. To do this, Kennametal combined a number of innovative technologies into this cutting tool solution including a double-sided yet positive rake insert, a unique AlTiN+TiN PVD coating that provides robust resistance to thermal fatigue, a higher quality steel for improved stiffness and rigidity under high cutting forces, a unique BTF46 (bolt taper flange) connection.

MORE TORQUE. LESS SPACE.

Spiroid & Helcon Gearing

- Enables world-class power density
- Is fully customizable to fit your application
- Fills the niche between hypoid and worm gearing

Is your application restricted by the physical limitations of conventional gearing? Spiroid’s gearing solutions are a proven competitive advantage.

www.spiroidgearing.com
that provides deflection resistance and a variable helix design that breaks up the harmonics that lead to chatter, further improving tool life, part quality, and throughput.

"We’ve optimized everything about the Harvi Ultra 8×," said Marshall. “The flutes and the coolant nozzles assure maximum chip flow, something that’s very important when you’re removing this much material—without it, the chips get jammed up and you’re facing catastrophic failure. Our KCSM40 grade has proven to be a top performer in high-temp alloys, but we also offer several equally excellent grades for other workpiece materials.”

For more information:
Kennametal
Phone: (724) 539-8033
www.kennametal.com

All Bearings are not Round...

Look to us for all your Bronze Wear Plate needs!

Ground Plate
Machined Plates
Oversized Saw Cut Plate
As Cast Plate

We have the Surface Finish, Alloy and Size you need!

Sales@atlasbronze.com • 800-478-0887 • www.atlasbronze.com
Gear grinding is all in the details—surface quality, cycle times, lower costs, quicker results, less energy consumption, etc. Gear producers want to make product faster, quicker and more efficiently than ever before. This means the grinding wheel needs to meet and exceed customer expectations with each and every turn. Thanks to a heavy dose of grinding conversation during and after IMTS 2018, we’re able to provide the latest trends, technologies, challenges and future considerations for grinding wheels in the gear market.

The Need for High-Speed

It’s no surprise that speed tops the list when it comes to grinding wheel technology. Faster grinding times produce more parts which results in a much more efficient machining operation.

“The gear industry is looking for higher-quality, more precise wheels that can grind very fast and provide the best surface finishing capabilities on the market,” said Amandine Martin, worldwide gear platform leader, Norton | Saint-Gobain.

TJ Boudreau, category manager for high volume production at Weiler Abrasives, said grinding wheel technology starts and ends with addressing the specific needs of each customer.

“If you can develop a grinding wheel that cuts faster and can be easily utilized on existing equipment, this is much more valuable to your customer. You can produce more parts per hour, reduce dress and save production time,” said Boudreau.

On the machine tool side, Andreas Mehr, grinding and shaping technology developer, at Liebherr, said gear customers are seeking out the following key capabilities: They want High Q-Prime (metal removal rate) for fast grinding times with a low risk of grinding burn. In combination with a fine surface roughness (Rz < 3µm) and good profile form deviation (fα < 2µm). They also want good tool life with a high number of parts per dressing.

“They want constant cutting and wear behavior over the shift-length and usable diameter range. The experience from us and our customers shows that when the worm diameter gets small the performance of the wheel sometimes gets bad,” Mehr added.

Regarding cylindrical gear technology, Martin Boelter, COO, Klingelnberg, cites high-speed and high-feed rates as well as an extremely open structure of grinding wheels in combination with innovative grit material that allows for high stock removal without the risk of grinding burn.

Meeting Efficiency and Productivity Demands

In order to make better gears, machining efficiency and productivity improvements are necessary to remain competitive in the gear market.

Understanding the metallurgy of the latest gear materials will play a huge role in meeting these demands now and in the future, according to Boudreau.

“The marketplace is advancing so quickly that many customers are working with materials that are harder to grind. Some customers have no idea where to start. Our job is to make sure our grinding wheels are doing what they were asked to do in the first place,” said Boudreau. “Tooling can be a tremendous expense for gear manufacturers and we want our wheel technology to provide the greatest efficiency gains.”

High metal removal rates are achieved due to fast cycle times as well as the increased stability of the grinding wheels today, according to Dr. Rolf Schalaster, head of competence center grinding technology at Klingelnberg.

“Klingelnberg machines enable a good performance for deep grinding (from solid). Deep grinding enables high flexibility in the gear design (tool profile). This strategy can be seen as an alternative to blade grinding, coating and setting up the cutter head for a cutting process,” Schalaster said.

Spin City

Grinding Wheel Technology Focuses on Speed, Efficiency and Time Savings

Matthew Jaster, Senior Editor

Xtrimium bevel gear grinding wheel from Norton | Saint-Gobain.
Grinding Challenges

Mehr at Liebherr cites several challenges that need to be met in grinding today saying that the increased quality requirements and NVH behavior, especially for E-Drive are some of the greatest challenges. There is also a clear tendency for more topological modifications on gears and asymmetric tooth profiles.

“Here Liebherr is already well positioned due to the latest software developments like, GER (Generated End Relief) and generating grinding of asymmetries,” he said.

For collision critical gears, Mehr said you need worms with a small outside diameter (<120 mm) in combination with a length of 200 mm and a bore of 40 mm. These wheel dimensions are a technical challenge to manufacturing.

“Especially on these small worms the requirement on a homogenous wheel structure and constant hardness is very high. Both characteristics are a ‘must-have’ for a successful generating grinding process,” Mehr said.

Boelter agreed that the electrification of the drivetrain will require higher precision and lower tolerances. This will also increase the requirements for tooth waviness and noise characteristics.

Many of today’s challenges are simply a result of opposing requirements, according to Boelter.

“Customers want high precision as well as high productivity, special tool modifications, superfine surface finishes and increased load carrying capacity and noise requirements,” he said. “Many of these requirements contradict each other.”

Dual Design

With so much emphasis on multifunctional machining, several machine tools can take advantage of wheels today that handle multiple operations.

Norton | Saint-Gobain featured a new dual-worm wheel design during IMTS 2018 that enables two operations in one grinding wheel, substantially saving time and cost. Norton Xtrimium Dual-Worm grinding wheels feature a unique design with a high-performance vitrified bond section for grinding and a fine-grit resin section for polishing the gear teeth, enabling one wheel to perform what traditionally required two wheels.

Substantial savings in wheel costs and productivity via the elimination of wheel swapping can be achieved with the Norton design. In addition, improved surface finishes of Rz = 1.0 mm and Rpk = 0.05 mm, and reduced harmonics (noise) are realized. The Norton Xtrimium Dual-Worm Grinding wheels can also be adapted to existing machines.

“Our customers are seeking solutions where grinding parameters can be met for higher accuracy and improved surface finishes,” Martin said. “This is where Norton Xtrimium can offer an advantage in quality.”

Boudreau also believes the gear market is following general metalworking by combining as many operations as possible into a single machine.

“Grinding and polishing in one operation. This is what's happening in the gear industry. Weiler is currently developing this for a customer’s honing operation,” he said.
An Eye on Service & Support
With dual wheel designs and new gear materials, companies offering grinding wheels have to go above and beyond just selling consumables to a job shop or OEM.

“Our goal is obviously to meet the long-term needs of our customers with a full line of technology and a full line of application engineers who can come in and streamline the process,” said Joshua Fairley, product engineer, bonded abrasives at Norton | Saint-Gobain. “This starts with the service and support team. It’s about getting the full value out of the entire grinding operation.”

Adds Jim Gaffney, senior product manager at Norton | Saint-Gobain. “I’m proud to say our organization is always expanding capabilities through capital investments and hiring a tremendous amount of grinding talent around the world to serve our diverse global customer base.”

This is one of the number one critical needs that Boudreau hears from the gear industry in general.

“Service and support is always a challenge in this industry. It’s pivotal that you get the product out in a timely fashion and your response time is efficient when the customer needs a problem solved. When Weiler acquired SwatyComet it was an easy transition because both organizations shared a common focus on service and support,” Boudreau said.
Global Competency
Gaffney discussed the company’s global impact in grinding during IMTS 2018. “Strong wheels that sustain higher speeds need dimensional integrity for optimal success,” Gaffney said. “Norton | Saint-Gobain has made significant enhancements to our global technology centers including locations in Germany, Spain, India and North America. We share research and knowledge across these centers, working hand-in-hand with OEMs to build better relationships along the way.”

“Following this successful in-house collaborative approach, we start with the grains and then add the speed and grinding dynamics needed to maximize efficiency,” Gaffney said. “We’re actually the first company to introduce a shaped grain to the market, over 20-years ago. Many companies source grains instead of developing them internally.”

Mix & Match Tech
SwatyComet, headquartered in Maribor, Slovenia, dates back to 1879 and has a long tradition of providing high quality abrasive products. Now as a part of Weiler, the organization started in aerospace applications in North America and is ready to focus its efforts in gear manufacturing.

Weiler has decades of experience with its bond technology. While many of the larger companies develop their own grain technology, Weiler has partnerships with different vendors in the industry.

“We can look at all these different abrasive technologies and identify which one works best with our bond technology,” said Boudreau. “This gives us the ability to create unique pairings from different abrasive manufacturers into our grinding wheels. We can also determine what the most cost effective solution is available for our customer’s application.”

Smarter Wheels
On the focus within Industry 4.0 one additional feature of grinding wheels is the automatic data transfer of the tool information like module, no. of starts, pressure angle, allowable cutting speed, etc. into the grinding machine. “Maybe the solution is an integrated RFQ chip or data matrix code printed on the wheel. Both are a real challenge on vitrified bonded wheels, due to the surface structure and manufacturing process of the wheels. The wheel manufacture should seek a smart solution,” Mehr said.

Norton | Saint-Gobain has recently been investigating this challenge and is looking to work closely with customers
We know high quality gears and components are vital to performance. Our leading edge vacuum technology and expertise provides precise control and repeatability for consistently superior parts.

- Low Pressure Vacuum Carburizing (LPVC)
- High Pressure Gas Quenching (HPGQ)
- Vacuum Stress Relieving

Advantages

- Uniformity of case depths
- Minimized distortion
- No IGO (Intergranular Oxidation)
- Parts returned clean, free of soot – eliminating downstream cleaning processes

For more information or a quote, call 1-855-WE-HEAT-IT or visit solaratm.com

The Future for Grinding Wheels

In Mehr’s opinion, a further grinding time reduction will not happen in the next 3–5 years. “Actually, the new abrasives like 3M Cubitron II or Norton Quantum are already developed. Also the bonding systems are designed for these abrasives. The trend for a finer surface roughness will lead to use of finer grain sizes in the finishing cut. To be still powerful in the roughing cut the demand on segmented grinding worms (with a roughing and finishing zone) will increase. A further focus should be on the Industry 4.0 topics like the gear data exchange format for the communication between the machine and the tool,” Mehr said.

Further advance of abrasive grit and compound material will allow higher stock removal rates. Compound technology will increase mechanical strength of grinding wheels allowing higher cutting speeds and benefitting productivity. In generating grinding there will be more applications with combination of different grinding wheel sections for conventional roughing
DTR. Your best choice for high quality gear cutting tools.

DTR is a world class supplier of the finest high performance long-life gear manufacturing tools, for small and large gear cutting applications. Established in 1976, we are one of the world’s largest producers of cutting tools, shipping to over 20 countries.

DTR offers a full line of gear cutting tools including:
• Hobs
• Carbide Hobs
• Shaper Cutters
• Milling Cutters
• Chamfering and Deburring Tools
• Broaches
• Master Gears

We can produce virtually any tool you need for auto, aerospace, wind, mining, construction and other industrial gears.

Every tool is precision-made utilizing high speed steel, premium powder metal or carbide and the latest in coatings, to achieve superior cutting and long life. DTR uses top of the line equipment including Reischauer CNC grinders and Klingelnberg CNC sharpeners and inspection equipment.

Learn more about our outstanding quality tools at www.dtrtool.com. Call us at 847-375-8892 for your local sales representative or Email alex@dtrtool.com for a quotation.

DTR has sales territories available. Call for more information.

For more information:
Klingelnberg America, Inc.
Phone: (734) 470-6278
www.klingelnberg.com

Liebherr Gear Technology, Inc.
Phone: (734) 429-7225
www.liebherr.com

Norton | Saint-Gobain
Phone: (508) 795-5921
www.nortonabrasives.com

Weiler Abrasives
Phone: (800) 835-9999
www.weilerabrasives.com

Substantial savings in wheel costs and productivity via the elimination of wheel swapping can be achieved with the Norton | Saint-Gobain design.
The global economy is driving demand for precision gears in a wide range of applications and industries. Along with increased demand, pricing pressure has caused manufacturers to seek out lower cost solutions for reducing overhead and manufacturing costs, while still producing high quality gears. However, there are several challenges which must be addressed to achieve these savings.

For example, the consumption of material needed for the manufacturing of drive trains alone has a direct impact on producing more waste, thus increasing manufacturing cost and detrimentally effecting the environment.

A Conventional Approach
Eighty to ninety percent of all gears used in aerospace, automotive and land based applications are finish ground with conventional abrasives.

Grinding sludge (abrasive swarf which includes spent abrasive grains) is a by-product of grinding wheels. The typical large U.S. manufacture of automotive transmissions can go through 25,000 gallons of oil and create 32,000 pounds of used abrasive waste annually. A significant portion of this coolant soaked abrasive swarf is disposed of in landfills.

In high production gear manufacturing (such as automotive), a continuous generation grinding process is used. This efficient grinding process typically yields 40–80 parts per dress. With conventional abrasives, the average consumption of grinding wheels would typically be one to two wheels per week, per machine.

The Case for cBN
Cubic Boron Nitride (cBN) abrasive wheels, which are a specially engineered abrasive grain referred to as a superabrasive, typically yield 2,200–2,500 parts per dress with one wheel lasting as long as four to six months. In addition to the longer wheel life, the physical construction of cBN wheels is also very different.

Whereas conventional wheels are made entirely of abrasives, cBN wheels have an aluminum core with only the outer rim containing the layer of abrasives - typically ¼”–½”. When the abrasives on the wheel are used up, the core can either be reused or recycled, while a conventional abrasive wheel stub would end up in a landfill.

Aluminum oxide (Al2O3) has been used in manufacturing for over 100 years to effectively finish grind parts. In the mid 1980’s Norton|Saint-Gobain introduced a new abrasive grain, which is a sintered ceramic grain that micro fractures as it grinds, leading to better performance and longer wheel life than the A/O wheels. cBN was invented by GE in 1957 and is considered a superabrasive. Like conventional abrasives, over time it has been improved by GE and other superabrasive producers.

<table>
<thead>
<tr>
<th>Superabrasives</th>
<th>Conventional Abrasives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diamond</td>
<td>• Aluminum Oxide (1800HV)</td>
</tr>
<tr>
<td>• Natural</td>
<td>• Zirconia Alumina (~1300HV)</td>
</tr>
<tr>
<td>• Synthetic</td>
<td>• Silicon Carbide (~2800HV)</td>
</tr>
<tr>
<td>9000HV</td>
<td></td>
</tr>
<tr>
<td>4500HV</td>
<td></td>
</tr>
</tbody>
</table>
Transferring Heat

Being much harder than conventional abrasives, cBN resists dulling—stays sharper longer during the grinding process, which results in a significant improvement in wheel life. It features excellent thermal conductivity characteristics for grinding applications, allowing the heat generated during the grinding process to transfer out and away from the grind zone. cBN has approximately 40 times higher heat transfer rate than that of aluminum oxide (Ref. 1).

Additionally, the thermal diffusivity of cBN is almost two orders of magnitude greater than that of aluminum oxide (Ref. 2).

Further work by GE suggests that in grinding with aluminum oxide, about 63% of the heat generated goes into the work piece, while with cBN grinding only 4% goes into the work piece. The study at GE suggests cBN grinding of carburized parts and hardened parts can impact additional residual compressive stress to the part surface. These stresses may be as little as 30% greater to as much as 250% greater than the heat treated surface stresses (Ref. 3).

Less tensile stress and more compressive stress equals stronger gear teeth. Therefore, cBN provides excellent wear resistant and thermal transfer qualities which result in a very robust grind, beneficial to the surface integrity of the gear tooth and gear.

Impact to the Bottom Line & More

Recent field tests show that cBN wheels can produce as much as 2,200–2,500 parts per dress.

This increase in productivity can offer a significant reduction in manufacturing costs. The field case study (see chart above) shows bottom line impact to a large gear manufacturer.

In addition to the cost advantages, the generation of grinding sludge by using cBN wheels is significantly reduced, lessening the impact to the environment. Also, by nearly eliminating spent abrasive grit from the machine, maintenance costs are reduced and machine life is extended. The reduction in the generation of grinding sludge on a yearly basis can result in significant cost savings and reduce material going to landfills. As waste disposal costs continue to rise, reducing the waste going to the landfill will become even more important.

There are other economic savings to be realized. When using cBN grinding wheels, less time is spent dressing the wheel, allowing increased machine uptime for grinding gears.

Gear quality is improved by the inherent benefits of grinding with cBN adding to the compressive residual stress of the gear tooth. Additionally, cBN helps to transmit heat much the way copper transmits electricity, by pulling the heat out of the grinding zone.

Extended dress frequency means more time in the grind cycle. In a conventional grinding process and grind cycle, a wheel has a break-in period after dress. The efficiency of the grind cycle and part quality drops when the wheel requires dressing or reconditioning.

cBN excels at providing long periods of peak cutting performance and high part quality. This has a direct impact on CPK, which is the measure of quality and the ability to hold the process within a certain tolerance bandwidth, and OEE (Overall Equipment Effectiveness) which is the measurement of efficiency and quality in a manufacturing environment.

As shown in the chart (to the left), OEE provides a simple way to look at process improvement in a production environment. More quality parts are produced when grinding without interruptions for longer periods of time.
Compared to the conventional abrasives like Aluminum Oxide and Ceramic Seeded Gel/Norton Quantum, cBN is significantly harder. Dressing and conditioning the cBN wheel requires a different approach than with conventional abrasives.

For example, when dressing threaded vitrified cBN grinding wheels, the dress compensation amount (which is the radial in-feed of the diamond roll into the cBN wheel face) are greatly reduced as compared to conventional wheel dress amounts to re-establish the form of the grinding wheel.

Wheel construction difference

With conventional abrasives, infeed would be .001”–.002” per pass whereas with cBN wheels it would be a fraction of this amount. During the initial dressing period, operators dress a newly installed wheel aggressively, often dressing .020”–.030” of the wheel face. A cBN wheel requires only a fraction of this infeed. The usable abrasive depth of a cBN wheel is typically .250”–.375”, so wheel manufacturers need to make certain the wheel face and thread form are close to operating tolerances.

Care needs to be taken when dressing a cBN wheel. Aligning the dresser with the face of the wheel is critical to prevent wheel chipping, and to reduce the total dress amount required for the machine to produce good quality parts.

Continuous gear generation machines use a threaded wheel to generate the involute form on a gear tooth. As continuous generation machines have...
evolved, efficient dressing features have improved. Faster grinding methods have also been developed by introducing multiple starts or multiple wheel threads along the face of the wheel. By introducing diamond rolls with multiple ribs to complement the cBN wheels, dressing times have been significantly reduced.

Often times, the number of “starts” on a wheel dictates the numbers of ribs on a dress roll. These multi-start rib rolls add efficiency to the dressing process, but can also add pressure on the rotary truing device spindle and spindle bearings. To be successful with cBN wheels, a solid, good quality rotary truing device is required. A rotary truing device that is old and worn can cause issues.

During a cBN grind test on a Reischauer RZ400, it was discovered through vibration analysis that the bearings were nearing the end of their life. The vibrations in the spindle bearings had been transmitted into the cBN wheel face, resulting in the vibration showing up in gear tooth inspection of the lead and profile.

This demonstrates the importance of having a rotary dressing unit in good condition when profiling a cBN wheel. In order to lower the dressing pressure, a single rib diamond roll should be considered.

Clear Benefits with cBN
The economic benefits of using cBN wheels in high production environments such as automotive applications are significant. The benefits of using
cBN wheels in continuous generation gear grinding can also be found in shops that grind large internal spur and helical gears using a simple cBN form wheel. Machine builders like Höfler, Gleason, and Kapp sell machines that grind both external and internal spur gears.

Grinding an internal spur or helical gear requires an internal attachment which looks like a bicycle fork with a much smaller wheel fitted to the machine.

These smaller conventional wheels typically have a much shorter life (lower G ratio) and require more dress cycles than in external grinding. To extend dress cycles, increasing the wheel life by as much as 100 percent, cBN wheels are the ideal choice. This often means one dress cycle will allow the grinding wheel to complete the gear without any additional dressing, whereas using a conventional grinding wheel in the same application could require more than one wheel to complete the job.

For gear manufacturers, cBN wheels can provide better quality gears with higher compressive residual stress, and allow greater throughput with less dress time and wheel changes. The absence of grinding swarf floating around in the machines promises longer machine life and fewer repairs. Coolant systems run cleaner, requiring less maintenance, filter paper and service. Lower abrasive consumption reduces tooling cost. Less waste going to landfills reduces costs and helps to protect the environment. All of these factors have an impact on the bottom line, helping gear manufacturers remain globally competitive and eco-friendly.

References

For more information:
Norton | Saint-Gobain
Phone: (508) 795-5921
www.nortonabrasives.com

Phil Plante has been with Norton | Saint-Gobain since 1979, and beginning in 1986 became active in the gear market. While at the company, he has held positions in Industrial Engineering, Facilities Engineering and Product Engineering. Phil is currently a Sr. Application Engineer at Norton | Saint-Gobain.

HARBIN TOOL WORKS was set up in 1993, it is a modern enterprise mainly produces gear cutting tools. We have got 13 national patents for invention and utility model. Some important operations in the production process are completed on sophisticated foreign facilities imported from Germany, Switzerland, Italy and Japan. We have introduced the Swiss Balzers coating equipment, which can be used in various coatings to achieve dry cutting.

HARBIN TOOL WORKS not only provides high-precision, high-performance products, but also offers comprehensive and high-quality service. After 20 years’ study in gear industry, we become acquainted with the questions and needs of clients in choosing products, purchasing equipments, booking and using cutters.

HARBIN TOOL WORKS has been certified by the quality security standard ISO9001:2015.
CASEMASTER EVOLUTION®

A Strong Case For Productivity, Speed and Consistency.

CaseMaster Evolution® (CMe) multi-chamber vacuum furnaces are available in two (in-out) and three (straight-through) chamber configurations. CMe furnaces can be equipped with high pressure gas or oil quenching. Advantages of these systems include increased productivity, faster carburizing cycles, consistent processing of densely packed loads, and uniform quenching with less distortion.

Learn more about our CMe furnace and see what SECO/VACUUM can do for you. Visit us at: www.SecoVacUSA.com
Accuracy is tight these days. Minute imperfections of only a few microns at any step of the process can be the difference between a gear that functions for years and one that fails critically in testing.

That includes the very first step: acquiring materials. According to Buddy Damm, scientist for advanced steel solutions at TimkenSteel, non-metallic inclusions just 10 microns in diameter — thinner than a hair — can be enough to eventually trigger a gear’s failure if you’re unlucky enough to get one right near the gear’s surface, where stresses are highest. In the past, when demands haven’t been as stringent, such minute imperfections weren’t as noticeable and a steel’s purity wasn’t scrutinized too strictly. But that’s all starting to change, and many steel suppliers are developing methods for producing cleaner steel.

That all starts by taking a hard look at some of the current standards we use to rate a steel’s cleanliness, many of which are aging and leave a little bit to be desired. ASTM E45, for example, is a standard that has been giving guidance on inclusions in steel for decades. It is worth noting that ASTM E45 does see revisions every few years, including in 2018, but according to Damm, the standard is being outpaced by evolving metrology machinery today.

“It doesn’t give you a lot of information and detail about the statistical nature of the inclusion content in the steel,” Damm said. “And not only does it not give you any statistical details, it’s not a very discriminating measuring technique anymore.”

TimkenSteel isn’t the only company going above and beyond what standards decree. Lily Kamjou, senior specialist, power trains, industry solutions development at Ovako, has run into similar issues, pointing to ISO 6336 as vague and not having kept up with modern manufacturing techniques. As demands on steel quality continue to rise, Kamjou has found that many jobs just demand more than what baseline standards and guidelines suggest.

“If you just ask for it according to the ISO standard, it’s very likely that you won’t get that performance level that you’re counting on,” Kamjou said. “It doesn’t really match the material demands. That’s something we run into quite a lot.”

And if you don’t get the material quality you’re looking for, it can exacerbate already excruciating lead times by forcing you to redo prototypes. But that’s where Ovako comes in. One of their major selling points is the personal relationship the company tries to build with customers early in the prototyping process. By trying to get involved early, Ovako’s experts not only have an
The Complete Technical Solution for Today’s Gear Grinding Challenges

Learn more about how Norton Xtrimium wheels master all of these challenges for worm grinding, profile grinding and bevel grinding

http://nortonsga.us/xtrimiumgt
opportunity to share their expertise beyond the basics of what official standards demand, but also can get their steel in the manufacturer's hands quickly enough to give them a chance to perform multiple prototyping trials.

"If we can get involved at an early stage, we can make sure that we can supply the prototype material needed to do all the different testing," Kamjou said. "Which is from the end point of view, crucial because it can be such a waste of time waiting for prototypes for a year or longer than that. But also, making sure that the material performance level is what you're actually asking for. It's very easy to ask something in theory that looks good on paper, but the reality is very, very different from what we've learned over the years working with this industry."

Both TimkenSteel and Ovako have also been focused on improving the affordability of high-end, cutting edge steel. Ovako through the high-fatigue resistant IQ- and BQ-steel families and TimkenSteel through their new Ultrapremium advanced air-melted and vacuum-refined steel-making process that is the culmination of ten years of effort and study at the company.

"This is the steelmaking practice that we evolved over the past ten years," Damm said. "It's a combination of a lot of careful manufacturing processes when making the steel and then a lot of careful testing to verify the inclusion content and to provide our customers with a statistically relevant data set about the inclusion population in the steel. That's Ultrapremium. It's our top tier of clean steel practice."

Ultrapremium is impressive in that it already goes above and beyond even premium aircraft standards such as AMS 2300 and 2304, two of the most stringent standards around, for steel cleanness. But in addition, Ultrapremium can be done at a fraction of the cost and with better lead time than other methods of producing similarly clean steel such as vacuum arc remelting (VAR).

Currently, vacuum arc-remelting is one primary way steel suppliers produce such clean steel. It's a lengthy and costly process that involves passing a high electric current through a solid steel electrode into a vacuum furnace. The steel electrode is slowly melted by the electric arc passing from the electrode tip to the newly forming liquid steel pool, which resolidifies in a water-cooled copper mold. This process continues slowly upwards incrementally, continuously melting the bottom until it's worked through the entire electrode. The whole process is time intensive and can only handle limited batch sizes, which means premium steels often get price tags to match their quality. According to Damm, you'll be paying three to five times more than average for vacuum melted steel.

The prime issue with these standards, and the primary reason TimkenSteel and Ovako compare themselves to vacuum arc-remelting, is that the current standards decree steel cleanness according to the process by which they were made, not the actual statistics of how pure they are. If you vacuum arc-remelt your steel, it gets a different rating than if you use a different process. This made a sort of roundabout sense during a time when vacuum arc-remelting was the only process capable of reaching a certain quality of cleanness, but now that companies like Ovako and TimkenSteel have developed competing processes that the standards don't account for, these processes are producing steel as clean or even cleaner than the strictest standards demand, but are still given a lower grade in the existing system.

But not only are processes like improved endurance and reliability, but another major advantage is improved power density — sometimes even up to a 30% improvement. That means gears capable of handling 30% heavier loads or, conversely, being capable of handling the same load with a considerably smaller gearset.

In general, material suppliers are seeing power density as an increasingly important area to focus on. Numerous customers are looking to reduce the size of their products without compromising strength or durability. In particular, the aerospace and automotive racing fields are interested in improving power density for lightweighting purposes. Lighter planes and rockets require less fuel to propel themselves, and a lighter racing car obviously takes less effort to go faster. And starting with lightweight, premium materials that tout superior potential
Finish First

New Genesis® GX Series takes gear grinding quality and productivity to an entirely new level, with single-tool setup, integrated automation, twist-controlled and polish grinding – and Closed Loop networking with GMS® inspection.

www.gleason.com/GX
ADMIRE ITS PURITY

power density is an easy, if perhaps more costly, way to improve that metric.

According to Elias Löthman, application engineer, industry solutions development at Ovako, that focus on lightweighting is one of the main reasons steel purity has come into the spotlight. Previously, the focus wasn’t as important, as manufacturers could just upsize their gears to compensate for any deficiencies in the steel, but now that products are shrinking again, the easy option is less and less applicable, and now the pressure is shifting onto steel suppliers, as well.

"Before there hasn’t really been issues because you’ve allowed yourself to make them big and bulky," Löthman said. "But now when the restrictions are getting more demanding and the space is getting smaller, then these things become issues.”

"Steel hasn’t really been important up until now because they can just make everything bigger or they could just throw after treatments at it," Kamjou added. “But now with increasing demands, it’s putting pressure on steel, as well.”

Steel purity isn’t the only path to achieving improved power density. There’s also the option of developing an alloy, as in the case of QuesTek Innovations’ Ferrium line, a carburizable steel alloy which can deliver a 20% increase in power density. The Ferrium line is primarily designed to appeal to manufacturers looking to lightweight components.

“C64 is one of the highest-performance carburizable steels available today,” Jeff Grabowski, manager of business development at QuesTek, said. “It’s displacing some of these legacy alloys like X53 and 9310 that have been in use for many decades.”

QuesTek’s Ferrium lines provide high surface hardness, fatigue resistance, and perhaps most interestingly, high temperature resistance, one of the line’s most unique and important selling points. Ferrium C61 and C64 are capable of maintaining their strength above 500 degrees Fahrenheit where legacy alloys would soften and fail.

"The high temperature stability of Ferrium C61 and C64 is due to the high tempering temperature and the stability of the main strengthening phase, M2C carbides, at those temperatures," Grabowski said. “The strengthening carbides do not coarsen or dissolve until about 50 degrees below the tempering temperature of 925-950 degrees Celsius.”

And thanks to its high temperature resistance, Ferrium is also being tested for use in helicopter applications — specifically for oil-out performance.

Oil-out refers to conditions where a gear has to operate without any oil or other form of lubrication, most commonly because failure or damage has caused the oil to drain from the system. This rapidly becomes a problem for gears, as without lubrication, friction between the gears increases, and when friction increases, it produces a significant amount of heat. And when exposed to that heat, gears expand, causing the friction to worsen, and the situation continues to spiral until the gears tear themselves apart.

As we reported on almost two years ago, oil-out performance has become a renewed focus for some corners of the aerospace industry. The military, in particular, is interested in pushing a gear’s endurance as far as possible, as in the event of damage in battle, aircraft may need to make it back to safety under these exact conditions, and with operational ranges extending as technology improves, they’ll need as much time as possible to do so.

For some gears, the whole process can lead to a critical failure in as little as a minute. Previously, the upper limit of how long a gear could be expected to last had been 30 minutes. According to Grabowski, gears made with Ferrium have survived tests for 85. And considering heat is the primary driver of gear failure in an oil-out situation, it’s no surprise that QuesTek’s Ferrium line is appearing in these tests, or that it’s performing so well.

QuesTek’s Ferrium line is also being tested for use in additive manufacturing, which has the potential to finally provide a strong enough material to make 3D printed gears viable.

“We’re taking one of our Ferrium steels—Ferrium C64—and we’ve atomized it and we’ve done prints,” Grabowski said. “And we’re showing good static properties, strength and toughness and elongation, and we’re just now in the next six months going to be looking at fatigue performance of additive gears.”

One last innovation on this front comes from TimkenSteel’s Endurance steels, which includes a trio of patent-pending steel grades that Damm claims can improve a gearset’s power density by 20–30%. They were named American Metal Market’s Best Product Innovation of the Year in 2018 and boast an excessively high degree of strength and toughness, with a yield strength ranging from 180 to 210 KSI and toughness going from 35 to over 60 ft.-lbs. And if that’s not enough, it’s also possible to apply TimkenSteel’s Ultrapremium process to an Endurance steel for even further improvements to power density. These new steels offer a 25% to 40% increase in both strength and toughness over conventional gear steels like 8620, 4320 and similar.

“Both of these techniques, the Ultrapremium very clean steel or the Endurance high-strength, high-toughness steels offer real opportunities by themselves for improved power density,” Damm said. “And by combining the two of them, you would get further incremental improvement.”

No doubt, incremental improvement will continue to be the name of the game in the future, both for manufacturers looking for improved power density and for steel suppliers looking for newer and better products to offer. But right now, there isn’t much incremental about a 30% jump — an entire step change — in power density. If you’re looking for ways to shrink your own products down or have them handle heavier loads, consider looking at your materials. You might just find an opportunity for improvement.

For more information:
Ovako
+46 8-622-1300
www.ovako.com

QuesTek Innovations LLC
(847) 328-5800
www.questek.com

TimkenSteel
(330) 471-6832
www.timkensteel.com
GMS200 Skiving Machining Center for Gear Machine

Multi-Function Machine to Include Skiving

- High Efficiency Gear Skiving & Integrated Process
- Reduce Machining Time
- Superior Workability & Operability

Nachi America Inc.
715 Pushville Rd., Greenwood, IN 46143
317-530-1007 • www.nachiamerica.com
At Presrite, our experience, innovation and expertise, as well as the people behind it all, ensure that you get the best, most accurate net and near-net forgings. From presses up to 6,000 tons of capacity, to our state-of-the art Tech Center, we can offer design, engineering, die-making and production solutions.

Find out more at www.presrite.com
Manufacturing

sMart

is your resource for the latest in great ideas from our advertisers. Check this section every issue for sMart Engineering ideas and technology.

For information about advertising, contact Dave Friedman at (847) 437-6604 or dave@geartechnology.com.

Emergency Gear Replacement

Complete Spur & Helical Gears & Pinions

1/2” (12mm) - 59” (1500mm)

2-4 Day Turnaround for Gear Grinding

Industries Served:
- Oil & Gas
- Machine Tool
- Electrical
- Mining
- Steel
- Paper
- Mixing

810-765-8302 • 1390 South Parker, Marine City, MI 48039 Quotations to: rfq@splineandgear.com
GOTTA GET BACK IN TIME...

It may not be as impressive as a DeLorean, but if time travel is your thing, we have you covered at www.geartechnology.com.

Today, our user-friendly archive (1984 to present) is now available online with an optimized search engine that allows subscribers to locate specific articles using keywords and phrases.

We’ve created a database where subscribers can peruse almost thirty years of gear manufacturing articles without leaving their desks.

In an era where content is king, let Gear Technology be your destination for the past, present and future of gear manufacturing.

The Power of One²

Your Objective:
One face in perfect alignment with another. For infinity.

No problems. No distress. No delays.
That’s the same objective you have for choosing your gear producer. Circle Gear’s objective is to engage with every customer’s objectives.

- One to 1000 gears
- Customer designed or reverse engineered
- Gearbox repair, rebuild or redesign
- OEM or end-users
- ISO 9001:2015 Certified

1501 S. 55th Court, Cicero, IL 60804
(800) 637-9335
(708) 652-1000 / Fax: (708) 652-1100
sales@circlegear.com
www.circlegear.com

Spiral and Straight Bevel Gears (Cut, Ground or Lapped) • Spur Gears • Helical Gears • Long Shafts • Herringbone Gears • Involute and Straight Sided Splines • Internal Gears • Worm and Worm Gears • Racks • Sprockets • ISO Certified

Partnering with QualityReducer to provide Gearbox repair, rebuilding and reverse-engineering.
Grinding fluids
synthetic intelligence in perfection

SHAPING THE FUTURE OF INDUCTION

Induction Heat Treating Solutions

Your Global Source for Service, Support & Manufacturing

- Scanners
- Single Shot
- Lift & Rotate
- CHT
- Tooth by Tooth
- Part Development
- Power Supplies
- Parts & Service
- Installation & Construction

24 / 7 Customer Service: 800-547-1527

WE ARE A LITTLE EDGY...... When it comes to your productivity

Gear manufacturers need tools returned quickly. We sharpen your perishable assets to meet or surpass original sharpening specifications... rapidly. That is what we do.

Enabling our customers to continually cut teeth since 1999.

- HOB SHARPENING
- SKIVE CUTTER SHARPENING
- BROACH SHARPENING
- STRIPPING & RECOATING

WWW.GALLENCO.COM
216-642-5900
Fax: 216-642-8837 • Email: gallen@gallenco.com
5755 Canal Road, Valley View, OH 44125

Dillon Manufacturing, Inc.
2115 Progress Drive,
Springfield, Ohio 45505

ISO 9001:2015 - Sold through distributors

P 800.428.1133
F 800.634.6480
dillonmfg.com
sales4@dillonmfg.com
About This Directory
The 2018 Gear Technology Buyers Guide was compiled to provide you with a handy resource containing the contact information for significant suppliers of machinery, tooling, supplies and services used in gear manufacturing.

Cutting Tools ...44
Gear Blanks & Raw Material46
Gear Machines ...47
Grinding Wheels & Abrasive Tools49
Heat Treating Equipment & Supplies50
Heat Treating Services51
Inspection Equipment53
Lubricants ..54
Machine Tools ..55
Resources ..57
Services ...58
Software ..60
Used Machinery ..61
Workholding & Toolholding61

BOLD LISTINGS throughout the Buyers Guide indicate that a company has an advertisement in this issue of Gear Technology.

But Wait! Where are the Gear Manufacturers Listed?
If you are looking for suppliers of gears, splines, sprockets, gear drives or other power transmission components, see our listing of this issue's power transmission component advertisers on page 53. In addition, you will find our comprehensive directory in the December 2018 issue of Power Transmission Engineering as well as in our online directory at www.powertransmission.com.

Handy Online Resources

The Gear Industry Buyers Guide – The listings printed here are just the basics. For a more comprehensive directory of products and services, please visit our website, where you'll find each of the categories here broken down into sub-categories: www.geartechnology.com/dir/

The Power Transmission Engineering Buyers Guide – The most comprehensive online directory of suppliers of gears, bearings, motors, clutches, couplings, gear drives and other mechanical power transmission components, broken down into sub-category by type of product manufactured: www.powertransmission.com/directory/

How to Get Listed in the Buyers Guide
Although every effort has been made to ensure that this Buyers Guide is as comprehensive, complete and accurate as possible, some companies may have been inadvertently omitted. If you’d like to add your company to the directory, we welcome you. Please visit www.geartechnology.com/getlisted.php to fill out a short form with your company information and Buyers Guide categories. These listings will appear online at www.geartechnology.com, and those listed online will automatically appear in next year’s printed Buyers Guide.
GEAR BLANKS & RAW MATERIAL

All of the suppliers listed here are broken down by category (bar stock, forgings, gear steel, plastic resins, etc.) at www.geartechnology.com.

A. Finkl & Sons Co. www.finkl.com
Accurate Specialties Inc. www.accuratespecialties.com
Aksan Steel Forging www.aksanforging.com
All Metals & Forge Group, LLC www.steelforge.com
American Friction Welding www.teamaw.com
Anihas Castings www.anihas.com
ArcVac ForgeCast Ltd. www.arcvacsteel.com

Atlas Bronze 445 BUNTING AVE. TRENTON, NJ 08616
Phone: 609-599-1402 or 609-599-1402
sales@atlasbronze.com www.atlasbronze.com

Aviva Metals www.avivametals.com/
BGH Specialty Steel Inc. www.bgh.de
Bharat Forge Ltd. www.bharatforge.com
Boltex Manufacturing www.boltex.com
Brooker Bros. Forging Co. www.brookerbrosforgings.com
Buehler - An ITW Company www.buehler.com

CFS Machinery Co. Ltd. www.cfsforging.net
Cantop Drop Forge www.cantopdropforge.com

Castalloy www.castalloycorp.com
Celanease www.celanase.com
Compessed Gas Technologies Inc. www.nitrogen-generators.com
Concast Metal Products www.concast.com
Cornell Forge www.cornellforge.com

Cruclite Industries LLC www.cruclite.com
DSM Engineering Plastics www.dsm.com
Dayton Forging and Heat Treating www.daytonforging.com
Deco Products Company www.leetcode.com
DuPont plastics.dupont.com
Dura-Bar www.dura-bar.com
Earle M. Jorgensen Co. www.earlejmfg.com
ElectroHeat Induction www.electroheatinduction.com
Ellwood City Forge www.ellwoodcityforge.com
Eraasteel Inc. www.erasteel.com
EaseEltix, LLC www.easeEltix.com
GEAR MACHINES

All of the suppliers listed here are broken down by category (hobbing machines, bevel gear machines, shaping machines, broaching machines, etc.) at www.geartechnology.com.

ANCA, Inc.
www.anca.com

Abbex Corp.
www.abtex.com

Accu-Cut Diamond Tool Co.
www.accucutdiamond.com

Acme Manufacturing Co.
www.acmemfg.com

Advico
www.advico.co.uk

Affloter
www.affloter.com

Alliance Broach & Tool
www.alliancebroach.com

American Broach & Machine Co.
www.americanbroach.com

Anderson Cook Inc.
www.andersoncook.com

Apex Broaching Systems
www.apexbroach.com

BTS Broaching Tools
www.bstakinsamay.com.tr

Banyan Global Technologies LLC
www.banyang.com

Barber-Colman, Div of Bourn & Koch
www.bourn-koch.com

Bates Technologies, LLC
www.bates-tech.com

Becker GearMeisters, Inc.
www.maagmachines.com

Bourn & Koch Inc.
2500 KISHWAUKEE STREET
ROCKFORD, IL 61104
Phone: (815) 965-0019
Fax: (815) 965-4013

Breton USA
www.bretonusa.com

Broaching Machine Specialties
www.broachingmachine.com

Buderus Schleiftechnik GmbH
www.buderus-schleiftechnik.de

C & B Machinery
www.cbmachinery.com

CNC Center
www.cnc-center.com

Capital Tool Industries
www.capital-tool.com

Chamfermatic Inc.
www.chamfermatic.com

Clemco Industries Corp.
www.clemcoindustries.com

Cleveland Deburring Machine Co.
www.cdmachine.com

Colonial Tool Group
www.colonialtool.com

Comco Inc.
www.comcoinc.com

Compressed Gas Technologies Inc.
www.compressedgas.com

D C Morrison Company
www.dmorrison.com

DMG MORI USA
www.dmgusa.com

DVS Universal Grinding GmbH
www.undv.de

Danobat Machine Tool Co. Inc.
www.danobatusa.com

Dianamic Abrasive Products Inc.
www.dianamic.com

Donner-Pfister AG
www.dp.ch

Drake Manufacturing Services Co., LLC
www.drakemfg.com

EMAG LLC
www.emag.com

Electronics Inc.
www.electronics-inc.com

Eltro Services, Inc.
www.eltroservices.com

Engineered Abrasives
www.engineeredabrasives.com

Erwin Junker Machinery, Inc.
www.junker-group.com

FFG - Modul
www.star-su.com

Fassler by Daetwyler Industries faessler.daetwyler.com/en

Federal Broach & Machine
www.federalbroach.com

Fellowes Machine Tools
www.bourn-koch.com

Felsomat USA Inc.
www.felsomat.com

Forst Technologie GmbH & Co. KG
www.forst-online.de

Fuji Machine America Corp.
www.fujimachinery.com

Gear Consulting Group
www.gearconsultinggroup.com

Gearspect s.r.o
www.gearspect.com

Gehring L.P.
www.gehring.de

General Broach Company
www.generalbroach.com

Georg Kesel GmbH & Co. KG
www.kesel.com

German Machine Tools of America
www.gmtamerica.com

Gleason Corporation
1000 UNIVERSITY AVENUE
P. O. BOX 22970
ROCHESTER, NY 14692-2970
Phone: (585) 473-1000
Fax: (585) 461-4348

Gleason Works (India) Private Ltd.
PLOT NO. 37
DODDENAKUNDI INDUSTRIAL AREA
WHITEFIELD RD., MAHADEVAPURA
BANGALORE 560 048
INDIA
Phone: 011-91-80-2850-4376/15/16/91

Goldstein Gear Machinery LLC
www.goldsteinmachinery.com

Great Lakes Gear Technologies, Inc.
www.greatlakesgeartech.com

Greg Allen Company
www.gallenco.com

HÖFLER – A Brand of KLINGELNBERG
www.hoeller.com

HARD Technologies
www.hardtechnologies.com

Haas Multigrind LLC
www.multigrind.com

Hamai Co. Ltd.
www.hamai.com

Hanik Corporation
www.hanikcorp.com

November/December 2018 | GEAR TECHNOLOGY
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address Details</th>
<th>Website Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leibherr America</td>
<td>1465 WOODLAND DR. SALINE, MI 48176</td>
<td>www.leibherr.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (734) 429-7225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (734) 429-2294</td>
<td></td>
</tr>
<tr>
<td></td>
<td>info.lvt@leibherr.com</td>
<td></td>
</tr>
<tr>
<td>Liebherr-Verzahntechnik GmbH</td>
<td>KAUFBEURER STRASSE 141 D-87437 KEMPFEN</td>
<td>www.leibherr.com</td>
</tr>
<tr>
<td></td>
<td>GERMANY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+49) 831-786-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+49) 831-786127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>info.lvt@leibherr.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.leibherr.com</td>
</tr>
<tr>
<td>MPT Manufacturing Process Technologies</td>
<td>www.mptinc.com</td>
<td></td>
</tr>
<tr>
<td>Machine Tool Builders</td>
<td>7723 BURDEN ROAD MACHESNEY PARK, IL 61115</td>
<td>www.machinetoolbuilders.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (815) 636-7562</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (815) 638-5912</td>
<td></td>
</tr>
<tr>
<td>Mazak Corporation</td>
<td>www.mazakusa.com</td>
<td></td>
</tr>
<tr>
<td>Meccanica Nova Corporation</td>
<td>www.novagrinders.com</td>
<td></td>
</tr>
<tr>
<td>Meister Abrasives USA</td>
<td>www.meister-abrasives.com/USA</td>
<td></td>
</tr>
<tr>
<td>Miller Broach</td>
<td>www.millerbroach.com</td>
<td></td>
</tr>
<tr>
<td>Mitsubishi Heavy Industries America</td>
<td>MACHINE TOOL DIVISION 46992 LIBERTY DRIVE WIXOM, MI 48393</td>
<td>www.mitsubishiheavymachines.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (248) 669-6136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (248) 669-0614</td>
<td></td>
</tr>
<tr>
<td></td>
<td>brenda_motzell@mhiahq.com</td>
<td></td>
</tr>
<tr>
<td>Mutschler Edge Technologies</td>
<td>www.mutschleredge technik.com</td>
<td></td>
</tr>
<tr>
<td>Nachi America Inc.</td>
<td>715 PUSHVILLE RD. GREENWOOD, IN 46143</td>
<td>www.nachiamerica.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (317) 530-1001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (317) 530-1011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@nachiamerica.com</td>
<td></td>
</tr>
<tr>
<td>Nagel Precision</td>
<td>www.nagelusa.com</td>
<td></td>
</tr>
<tr>
<td>Normac, Inc.</td>
<td>www.normac.com</td>
<td></td>
</tr>
<tr>
<td>ORTA Italia</td>
<td>www.ortitalia.com</td>
<td></td>
</tr>
<tr>
<td>Ohio Broach & Machine Co.</td>
<td>www.ohiobroach.com</td>
<td></td>
</tr>
<tr>
<td>Okuma America Corporation</td>
<td>www.okuma.com</td>
<td></td>
</tr>
<tr>
<td>PTG Holroyd</td>
<td>www.holroyd.com</td>
<td></td>
</tr>
<tr>
<td>Parker Industries Inc.</td>
<td>www.parkerind.com</td>
<td></td>
</tr>
<tr>
<td>Penta Gear Metrology LLC</td>
<td>6161 WEBSTER STREET DAYTON, OH 45414</td>
<td>www.pentagear.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (937) 660-8182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (937) 660-8182</td>
<td></td>
</tr>
<tr>
<td>Phoenix Inc.</td>
<td>www.phoenix-inc.com</td>
<td></td>
</tr>
<tr>
<td>Pioneer Broach Co.</td>
<td>www.pioneerbroach.com</td>
<td></td>
</tr>
<tr>
<td>Pittler T&S GmbH</td>
<td>JOHANNES-GUTENBERG-STR. 1 DIETZENBACH HESSEN 63128 GERMANY</td>
<td>www.pittler.de</td>
</tr>
<tr>
<td></td>
<td>Phone: +49-6074-4873-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: +49-6074-4873-291</td>
<td></td>
</tr>
<tr>
<td></td>
<td>christian.nriel@pittler.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.pittler.de</td>
<td></td>
</tr>
<tr>
<td>PlasmaRoute CNC</td>
<td>www.plasmaroute.com</td>
<td></td>
</tr>
<tr>
<td>Prewema Antriebtechnik GmbH</td>
<td>www.prewema.de</td>
<td></td>
</tr>
<tr>
<td>Precision Finishing Inc.</td>
<td>www.precisionfinishinginc.com</td>
<td></td>
</tr>
<tr>
<td>Preco Inc.</td>
<td>www.precoinc.com</td>
<td></td>
</tr>
<tr>
<td>Prime Technologies</td>
<td>www.gear-tests.com</td>
<td></td>
</tr>
<tr>
<td>QC American</td>
<td>www.qcamerican.com</td>
<td></td>
</tr>
<tr>
<td>Röders GmbH</td>
<td>www.roeders.de</td>
<td></td>
</tr>
<tr>
<td>Ravjeet Engineering Specialty Ltd.</td>
<td>www.ravjeet.com</td>
<td></td>
</tr>
<tr>
<td>Redin Production Machine</td>
<td>www.redinmachine.com</td>
<td></td>
</tr>
<tr>
<td>Reishauer AG</td>
<td>INDUSTRIESTRASSE 36 CH-8304 WALLISellen SWITZERLAND</td>
<td>www.reishauer.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (41) 44-832-22-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (41) 44-832-23-90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@reishauer.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.reishauer.com</td>
<td></td>
</tr>
<tr>
<td>Reishauer Corporation</td>
<td>1525 HOLMES ROAD ELGIN, IL 60123</td>
<td>www.reishauer.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (847) 888-3628</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (847) 888-0343</td>
<td></td>
</tr>
<tr>
<td></td>
<td>usa@reishauer.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.reishauer.com</td>
<td></td>
</tr>
<tr>
<td>Roberts Sinto Corp.</td>
<td>www.robertssinto.com</td>
<td></td>
</tr>
<tr>
<td>Rotec Tools Ltd.</td>
<td>www.rotec tools.com</td>
<td></td>
</tr>
<tr>
<td>Rotek Incorporated</td>
<td>www.rotek-inc.com</td>
<td></td>
</tr>
<tr>
<td>Russell Holbrook & Henderson</td>
<td>www.tu-volute.com</td>
<td></td>
</tr>
<tr>
<td>SETCO Precision Spindles</td>
<td>www.setcousa.com</td>
<td></td>
</tr>
<tr>
<td>SU (Shanghai) Machine & Tools Co., Ltd.</td>
<td>www.samputensili.com</td>
<td></td>
</tr>
<tr>
<td>Saacke North America, LLC</td>
<td>www.saacke-usa.com</td>
<td></td>
</tr>
<tr>
<td>Samputensili S.P.A.</td>
<td>www.samputensili.com</td>
<td></td>
</tr>
<tr>
<td>SerWeMa GmbH & Co. KG</td>
<td>www.serwema.de</td>
<td></td>
</tr>
<tr>
<td>Star Cutter Co.</td>
<td>www.starcutters-com</td>
<td></td>
</tr>
<tr>
<td>Star SU LLC</td>
<td>5200 PRAIRIE STONE PARKWAY, SUITE 100 HOFFMAN ESTATES, IL 60192</td>
<td>www.star-su.com</td>
</tr>
<tr>
<td></td>
<td>Phone: (847) 649-1450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (847) 649-0112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sales@star-su.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.star-su.com</td>
<td></td>
</tr>
<tr>
<td>Sunnen Products Company</td>
<td>www.sunnen.com</td>
<td></td>
</tr>
<tr>
<td>Surface Finishing Equipment Co.</td>
<td>www.sfecindia.net</td>
<td></td>
</tr>
<tr>
<td>Surplex GmbH</td>
<td>www.surplex.com</td>
<td></td>
</tr>
<tr>
<td>TECO Werkzeugmaschinen GmbH & Co.</td>
<td>www.teco-germany.com</td>
<td></td>
</tr>
</tbody>
</table>
DTR Corp. (formerly Dragon Precision Tools) 1865A HICKS ROAD ROLLING MEADOWS, IL 60008 Phone: (847) 375-8892 Fax: (847) 375-8893 alex@dragon.co.kr www.dragon.co.kr

DVS Tooling GmbH www.dvs-tooling.de

DitaTech Tools India Pvt. Ltd. www.diatechtools.com

DiaMetal AG www.diametal.ch

Diamond Abrasive Products www.diamondabrasiveproducts.com

Diamatic Abrasive Products Inc. www.diamatic.com

Dr. Kaiser Diamantwerkzeuge www.kaiserdiamant.de

ESG Tools Pvt. Ltd. www.esgtools.com

FFG - Modul www.star-su.com

Fassler by Daetwyler Industries faessler.daetwyler.com/en/

Gear Resource Technologies Inc. www.greatresource.com

Gehring L.P. www.gehring.de

Gleason Corporation 100 UNIVERSITY AVENUE P.O. BOX 22070 ROCHESTER, NY 14692-2970 Phone: (585) 473-1000 Fax: (585) 461-4348 sales@gleason.com www.gleason.com

Gleason Cutting Tools Corporation 1351 WINDSOR RD. LOVES PARK, IL 61111 Phone: (815) 877-8900 Fax: (815) 877-0264 gctc@gleason.com www.gleason.com

Graff Diamond Products www.graffdiamond.com

Great Lakes Gear Technologies, Inc. www.greatlakesgear.com

Greg Allen Company www.gallenco.com

Hermes Abrasives Ltd. www.hermesabrasives.com

Interstate Tool Corp. itctoolcorp.com

Involute Gear & Machine Company www.involutegearmachine.com

J. Schneebberger Corp. www.schneebberger-us.com

JRM International, Inc www.jrminternational.com

Kapp Technologies 2670 WILDERNESS PLACE BOULDER, CO 80301 Phone: (303) 447-1130 Fax: (303) 447-1131 info-USA@kapp-niles.com www.kapp-niles.com

Klingelnberg AG BINZMUHLERSTRASSE 171 CH-8050 ZURICH SWITZERLAND Phone: (+41) 44-2787979 Fax: (+41) 44-2781594 info@klingelnberg.com www.klingelnberg.com

Klingelnberg America Inc. 118 E. MICHIGAN AVENUE, SUITE 200 SALINE, MI 48176 Phone: (734) 470-8278 Fax: (734) 316-2158 kla.info@klingelnberg.com www.klingelnberg.com

Klingelnberg GmbH PETERSTRASSE 45 HUCKEWSAGEN 42499 GERMANY Phone: (+49) 2192-810 Fax: (+49) 2192-81200 info@klingelnberg.com www.klingelnberg.com

Knuth Machine Tools USA, Inc. www.knuth-usa.com

Koepefer America koepeferamerica.com

Lambda Technologies www.lambdatechs.com

Lieberherr America 1465 WOODLAND DR. SALINE, MI 48178 Phone: (734) 429-7225 Fax: (734) 429-2294 info.lgt@liebherr.com www.liebherr.com

Lieberherr-Verzahntechnik GmbH KAUFBEURER STRASSE 141 D-87437 KEMPTEN GERMANY Phone: (+49) 831-795-0 Fax: (+49) 831-7862179 info.lvt@liebherr.com www.liebherr.com

Longevity Coatings www.longevitycoatings.com

Marposs Corporation www.marposs.com

Meister Abrasives USA www.meister-abrasives.com/USA

Modern Gearing www.moderngearing.com

Mutschler Edge Technologies mutschleredgetech.com

Nagel Precision www.nagelusa.com

Naxos-Diskus Schleifmittelwerke GmbH www.naxos-diskus.de

Norton | Saint-Gobain 1 NEW BOND STREET P.O. BOX 19398 WORCESTER, MA 01606 Phone: 508-319-2313 Fax: 508-319-2314 www.nortonabrasives.com

Osborn International www.osborn.com

PTG Holroyd www.holroyd.com

Particular Technology, Inc. www.particulartechnology.com

Philadelphia Carbide Co. www.philcarbide.com

Precision Spindle & Accessories Inc. www.precisionspindleinc.com

QC American www.qcamerican.com

Radiac Abrasives www.radiac.com

All of the suppliers listed here are broken down by category (diamond wheels, grinding wheels, honing stones, etc.) at www.geartechnology.com.

Diametal AG www.diametal.ch

Diamond Abrasive Products www.diamondabrasiveproducts.com

Diamatic Abrasive Products Inc. www.diamatic.com

Dr. Kaiser Diamantwerkzeuge www.kaiserdiamant.de

ESG Tools Pvt. Ltd. www.esgtools.com

FFG - Modul www.star-su.com

Fassler by Daetwyler Industries faessler.daetwyler.com/en/

Gear Resource Technologies Inc. www.greatresource.com

Gehring L.P. www.gehring.de

Gleason Corporation 100 UNIVERSITY AVENUE P.O. BOX 22070 ROCHESTER, NY 14692-2970 Phone: (585) 473-1000 Fax: (585) 461-4348 sales@gleason.com www.gleason.com

Gleason Cutting Tools Corporation 1351 WINDSOR RD. LOVES PARK, IL 61111 Phone: (815) 877-8900 Fax: (815) 877-0264 gctc@gleason.com www.gleason.com

Graff Diamond Products www.graffdiamond.com

Great Lakes Gear Technologies, Inc. www.greatlakesgear.com

Greg Allen Company www.gallenco.com

Hermes Abrasives Ltd. www.hermesabrasives.com

Interstate Tool Corp. itctoolcorp.com

Involute Gear & Machine Company www.involutegearmachine.com

J. Schneebberger Corp. www.schneebberger-us.com

JRM International, Inc www.jrminternational.com

Kapp Technologies 2670 WILDERNESS PLACE BOULDER, CO 80301 Phone: (303) 447-1130 Fax: (303) 447-1131 info-USA@kapp-niles.com www.kapp-niles.com

Klingelnberg AG BINZMUHLERSTRASSE 171 CH-8050 ZURICH SWITZERLAND Phone: (+41) 44-2787979 Fax: (+41) 44-2781594 info@klingelnberg.com www.klingelnberg.com

Klingelnberg America Inc. 118 E. MICHIGAN AVENUE, SUITE 200 SALINE, MI 48176 Phone: (734) 470-8278 Fax: (734) 316-2158 kla.info@klingelnberg.com www.klingelnberg.com

Klingelnberg GmbH PETERSTRASSE 45 HUCKEWSAGEN 42499 GERMANY Phone: (+49) 2192-810 Fax: (+49) 2192-81200 info@klingelnberg.com www.klingelnberg.com

Knuth Machine Tools USA, Inc. www.knuth-usa.com

Koepefer America koepeferamerica.com

Lambda Technologies www.lambdatechs.com

Lieberherr America 1465 WOODLAND DR. SALINE, MI 48178 Phone: (734) 429-7225 Fax: (734) 429-2294 info.lgt@liebherr.com www.liebherr.com

Lieberherr-Verzahntechnik GmbH KAUFBEURER STRASSE 141 D-87437 KEMPTEN GERMANY Phone: (+49) 831-795-0 Fax: (+49) 831-7862179 info.lvt@liebherr.com www.liebherr.com

Longevity Coatings www.longevitycoatings.com

Marposs Corporation www.marposs.com

Meister Abrasives USA www.meister-abrasives.com/USA

Modern Gearing www.moderngearing.com

Mutschler Edge Technologies mutschleredgetech.com

Nagel Precision www.nagelusa.com

Naxos-Diskus Schleifmittelwerke GmbH www.naxos-diskus.de

Norton | Saint-Gobain 1 NEW BOND STREET P.O. BOX 19398 WORCESTER, MA 01606 Phone: 508-319-2313 Fax: 508-319-2314 www.nortonabrasives.com

Osborn International www.osborn.com

PTG Holroyd www.holroyd.com

Particular Technology, Inc. www.particulartechnology.com

Philadelphia Carbide Co. www.philcarbide.com

Precision Spindle & Accessories Inc. www.precisionspindleinc.com

QC American www.qcamerican.com

Radiac Abrasives www.radiac.com

All of the suppliers listed here are broken down by category (diamond wheels, grinding wheels, honing stones, etc.) at www.geartechnology.com.
AFC-Holcroft www.afc-holcroft.com
Abbott Furnace Company www.abbottfurnace.com
Advanced Nitriding Solutions www.ans-ion.net
Ajax Tocco Magnethermic 1745 OVERLAND AVE NE WARREN, OH 44483
Phone: 330-372-8511
Fax: 330-372-8688
sales@ajaxtocco.com www.ajaxtocco.com
Aksan Steel Forging www.aksanforging.com
Ambrell Precision Induction Heating www.ambrell.com
Avion Manufacturing Company Inc. www.avionmfg.com
Bega Special Tools www.bega.nl
Byington Steel Treating www.byingtonsteel.com
C.J. Hayes www.cjhayes.com
Cascade TEK www.cascadetek.com
Compressed Gas Technologies Inc. www.nitrogen-generators.com
Contour Hardening, Inc. www.contourhardening.com
DAM HÄRTETECHNIK GmbH www.stopoffpaints.com
DK Surface Hardening www.dksurfacehardening.com
Davron Technologies www.davrontech.com
Duffy Company, The www.duffycompany.com

ECT USA 9505 72ND AVE. SUITE 400 PLEASANT PRAIRIE WI 53158
Phone: (262) 605-4810
info@ecm-usa.com www.ecm-usa.com

EFD Induction Inc. www.efdinduction-usa.com
East Coast Induction www.eastcoastind.com
Eldic Induction USA, Inc. www.eldic-usa.com
ElectroHeat Induction www.electroheatinduction.com
Eltro Services, Inc. www.eltroservices.com
Euclid Heat Treating www.euclidheattreating.com
FPM Heat Treating www.fpmht.com
Infrared Heating Technologies www.infraredheating.com
Ionitech Ltd. www.ionitech.com

Ipsen, Inc. 984 IPSEN RD. CHERRY VALLEY, IL 61016
Phone: (800) 727-7625
Fax: (815) 332-4549
sales@ipsenusa.com www.IpsenUSA.com

Khemka Broach & Spline Gauge www.KhemkaBroach.com

Klingelnberg AG BINZMÜHLESTRASSE 171 CH-8050 ZURICH
Phone: +(41) 44-2781594
Fax: +(41) 44-2797979
info@klingelnberg.com www.klingelnberg.com

Klingelnberg GmbH PETERSTRASSE 45 D-42499 HAMBURG
Phone: +(49) 2192-81200
Fax: +(49) 2192-81200
info@klingelnberg.com www.klingelnberg.com

Koncar Termohrznak d.o.o. koncar-termohrznanak.hr
Lucifer Furnaces, Inc. www.luciferfurnaces.com
Machine Tool Solutions, Inc. machtoolinc.com

HEAT TREATING EQUIPMENT & SUPPLIES

All of the suppliers listed here are broken down by category (batch furnaces, continuous furnaces, induction heating equipment, ovens, etc.) at www.geartechnology.com.
HEAT TREATING SERVICES

All of the suppliers listed here are broken down by category (carburizing, nitriding, induction hardening, etc.) at www.geartechnology.com.

Solar Manufacturing
1983 CLEARVIEW ROAD
SOUDERTON, PA 18964
Phone: (267) 384-5040
Fax: (267) 384-5060
info@solararmfg.com
www.solararmfg.com
Stack Metallurgical Services, Inc.
www.stackmet.com
Surface Combustion
www.surfacecombustion.com
TM Induction Heating
www.tminductionheating.com
ZRIME
www.zrime.com.cn
Zion Industries
www.zioninduction.com

HEAT TREATING SOLUTIONS

Induction Heat Treating Solutions

Ajax Tocco Magnethermic
1745 OVERLAND AVE NE
WARREN, OH 44483
Phone: 330-372-8511
Fax: 330-372-8608
sales@ajaxtocco.com
www.ajaxtocco.com

Agron Steel Treating Company
www.agronsteel.com
Aksan Steel Forging
www.aksanforging.com
American Metal Treating Co.
www.americanmetaltreating.com
American Metal treating, Inc.
www.americanmetaltreatinginc.com
Ampere Metal Finishing
www.amperemetal.com

EFCO Induction Inc.
www.elfinduction-usa.com
ERS Engineering Corp.
www.ersengine.com
Eagle Tool Company Inc.
www.eaglebroach.com
East-Lind Heat Treat, Inc.
www.eastlind.com
Eldoc Induction USA, Inc.
www.eldoc-usa.com

Applied Process
www.appliedprocess.com
Applied Thermal Technologies
www.appliedthermaltechnologies.com
Avion Manufacturing Company Inc.
www.avionmfg.com
BG&S Peening and Consulting LLC
www.peening-consultants.com
BOS Services Company
www.bosheattreating.com
Bennett Heat Treating & Brazing Co., Inc.
www.bennetteh.net
Best Technology Inc.
www.besttechnologyinc.com
Bluewater Thermal Solutions
www.bluewaterthermal.com
Bodycote Thermal Processing - Highland Heights
www.bodycote.com
Bodycote Thermal Processing - Melrose Park
www.bodycote.com
Boltex Manufacturing
www.boltex.com
Braddock Metallurgical
www.braddockmt.com
Burlington Engineering, Inc
www.burlingtoneng.com
Byington Steel Treating
www.byingtonsteel.com
CST-Cincinnati Steel Treating
www.steeltreating.com
Cambridge Heat Treating Inc.
www.cambridgeheattreating.com
Cascade TEK
www.cascadeteck.com
Certified Steel Treating
www.certifiedsteeltreat.com
Chicago Flame Hardening
www.czfame.com
Cleveland Deburring Machine Co.
cdmcmachine.com
Complete Heat Treating
www.completeht.com
Continental Heat Treating, Inc.
www.continentalht.com
Contour Hardening, Inc.
www.contourhardening.com
Cryogenic Institute of New England, Inc.
www.nitrofreeze.com
Cryoplast Inc.
www.cryoplast.com
Curtiss-Wright Surface Technologies
www.cwst.com
DK Surface Hardening
www.dksurfacehardening.com
Dayton Forging and Heat Treating
www.daytonforging.com
Duffy Company, The
www.duffycompany.com
ECM USA
9505 72ND AVE. SUITE 400
PLEASANT PRAIRIE WI 53158
Phone: (262) 605-4810
info@ecm-usa.com
www.ecm-usa.com

November/December 2018 | GEAR TECHNOLOGY
Klingelnberg GmbH
PETERSTRASSE 45
HUECKESWAGEN 42499
GERMANY
Phone: +49 (41) 2192-810
Fax: +49 (41) 2192-8100
info@klingelnberg.com
www.klingelnberg.com

Kowalski Heat Treating
www.khtheat.com

Lalson Tools Corporation
www.lalsoncuttingtools.com

Lambda Technologies
www.lambdatechs.com

Mackei Ispat & Forging Ltd.
mackeiforgings.com

Magnum Induction
www.magnuminduction.com

McLeod and Norquay Ltd.
www.nclmtnorquay.com

Metallurgical Processing, Inc.
www.mpmetaltrating.com

Metallurgical Solutions, Inc.
www.melit-sol.com

Metab
www.metlabheattreat.com

Mid-South Metalurgical
www.midsouthmetalurgical.com

Midwest Thermal-Vac Inc.
www.mtvac.com

Nachi America Inc.
715 PUSHVILLE RD.
GREENWOOD, IN 46143
Phone: (317) 539-1001
Fax: (317) 539-1031
info@nachiamerica.com
www.nachiamerica.com

National Heat Treat
nationalheatreat.com

Nisha Engineers (India)
www.nishagroup.com

Nitrex Inc. - Chicago Operations
www.nitrex.com

Nitrex Inc. - Indiana Operations
www.nitrex.com

Nitrex Inc. - Michigan Operations
www.nitrex.com

Nitrex Inc. - Nevada Operations
www.nitrex.com

Nitrex Inc. - West Coast Operations
www.nitrex.com

Nitrex Metal Inc.
www.nitrex.com

Oerlikon Balzers - PPD Division
www.oerlikon.com

Ohio Vertical Heat Treat
www.o-vht.com

Ovako AB
www.ovako.com

Paulo
www.paulo.com

Penna Flame Industries
www.pennaflame.com

Pentiction Foundry Ltd.
www.pentictonfoundry.com

Peters Heat Treating
www.petersheatreat.com

Pillar Induction
www.pillar.com

Precision Finishing Inc.
www.precisionfinishinginc.com

Precision Heat Treating Co.
www.precisionheat.net

Precision Pump and Gear Works
www.ppg-works.com

Preco Inc.
www.precoinc.com
All of the suppliers listed here are broken down by category (gages, CMMs, analytical gear inspection machines, bevel gear testers, etc.) at www.geartechnology.com.

A.G. Davis - AA Gage
www.agdavis.com

ABTech Inc.
www.abtechnmfg.com

Accu-Cut Diamond Tool Co.
www.accucutdiamond.com

Advent Tool and Manufacturing Inc.
www.advent-threadmill.com

Advico
www.advico.co.uk

Ajax Tool Supply
www.ajaxtoolsupply.com

Aksan Steel Forging
www.aksanforging.com

American Stress Technologies, Inc.
www.astresstech.com

Andec Mfg. Ltd.
www.andec.ca

Anthony Best Dynamics Ltd
www.abtechmfg.com

American Stress Technologies, Inc.
www.astresstech.com

Auburn, CA 95603
1605 INDUSTRIAL DRIVE
Phone: (530) 885-8157
Fax: (530) 885-8157
sales@broachmasters.com
www.broachmasters.com

AUBURN, CA 95603
1605 INDUSTRIAL DRIVE
Phone: (530) 885-8157
Fax: (530) 885-8157
sales@broachmasters.com
www.broachmasters.com

Ash Gear & Supply
www.ashgear.com

Atlas Copco
www.atlascopco.com

Atlantic Tool & Engineering Co., Inc.
www.atlantictool.com

Avalon International Corporation
www.avaloninternationalway.com

Becker GearMeisters, Inc.
www.bggear.com

Bendix Corporation
www.bendix.com

Bourn & Koch Inc.
www.bourn-koch.com

Broach Masters/Universal Gear Co.
www.broachmasters.com

Buehler - An ITW Company
www.buehler.com

CN Technical Services Ltd (CN Tech)
www.cntechniq.com

CNC Center
www.cnccenter.com

Capital Tool Industries
www.capital-tool.com

Carl Zeiss Industrial Metrology LLC
www.zeiss.com/metrology

Celeanse
www.celeanse.com

Certified Comparator Products (CCP)
www.certifiedcomparator.com

Comtorgage Corporation
www.comtorgage.com

DK Surface Hardening
www.dksurfacehardening.com

Dino-Lite
www.dinolite.us

Donner+Pfister AG
www.dpag.ch

Drewco Workholding
www.drewco.com

Dyer Company
www.dyrage.com

Erwin Junker Machinery, Inc.
www.junker-group.com

Euro-Tech Corporation
www.eurotechcorp.com

FARO Technologies, Inc.
www.faro.com

FHUSA-TSA
www.fsusa-sqa.com

FPM Heat Treating
www.fpmt.com

Flexbar Machine Corporation
www.flexbar.com

Foerster Instruments Incorporated
www.foerster.com

Fremco GmbH
www.fremco.de

Fuji Machine America Corp.
www.fujimachine.com

Furnaces, Ovens & Baths, Inc.
www.fobinc.com

Gear Consulting Group
www.gearconsultinggroup.com

Gearspect s.r.o.
www.gearspect.com

Gleason Corporation
1000 UNIVERSITY AVENUE
P. O. BOX 22970
ROCHESTER, NY 14692-2970
Phone: (585) 473-1000
Fax: (585) 461-4048
sales@gleason.com
www.gleason.com

Gleason Metrology Systems
300 PROGRESS ROAD
DAYTON, OH 45459
Phone: (937) 859-8273
Fax: (937) 898-4452
gleason-metrology@gleason.com
www.gleason.com

Gleason Works (India) Private Ltd.
PLOT NO. 37
DODDENAKUNDI INDUSTRIAL AREA
WHITEFIELD RD., MAHADEwapura
BANGALORE 560 048
INDIA
Phone: 011-91-80-2950-4376/15/16/91
www.gleason.com

Gleason-Hirth Tooling GmbH
MOOSASCHER STR. 42-48
D-89089 MÜNCHEN
GERMANY
Phone: 011-49-89-35401-0
www.gleason.com

Goldstein Gear Machinery LLC
www.goldsteingearmachinery.com

Great Lakes Gear Technologies, Inc.
www.greatlakesgear.com

Greg Allen Company
www.gallenco.com

HITEC Sensor Developments
www.hitec.com

Hank Corporation
www.hankcorp.com

Hansford Sensors
www.hansfordsensors.com/us/

Hexagon Metrology
www.hexagonmetrology.us

HobSource Inc.
www.hobsource.com

Hydra-Lock Corporation
www.hydralock.com

ITW Heartland
1205 38TH AVENUE WEST
ALEXANDRIA MN 56308
Phone: (320) 762-0138
Fax: (320) 762-5845
info@itwheartland.com
www.itwheartland.com

Innovative Analytical Solutions
www.steeliaanalyzer.com

Interstate Tool Corp.
www.interstatetool.com

Involute Gear & Machine Company
www.involutegearmachine.com

Kapp Technologies
2870 WILDERNESS PLACE
BOULDER, CO 80301
Phone: (303) 447-1130
Fax: (303) 447-1131
info-USA@kapp-niles.com
www.kapp-niles.com

Khemka Broach & Spline Gauge
www.khemkabroach.com

Klingelnberg AG
BIZMULHESTRASSE 171
CH-8050 ZURICH
SWITZERLAND
Phone: (+41) 44-2787978
Fax: (+41) 44-2781594
info@klingelnberg.com
www.klingelnberg.com

Klingelnberg America Inc.
118 E. MICHIGAN AVENUE, SUITE 200
SALINE MI 48176
Phone: (734) 470-6278
Fax: (734) 316-2158
Kia.info@klingelnberg.com
www.klingelnberg.com

Koepefer America
koepeferamerica.com

LDB Corporation
ldbcorp.com

Lambda Technologies
www.lambdatechs.com

Liebherr America
1465 WOODLAND DR.
SALINE, MI 48176
Phone: (734) 429-7225
Fax: (734) 429-2294
info.lgt@liebherr.com
www.liebherr.com

MPT Manufacturing Process Technologies
www.mptinc.com

MRO Electric and Supply
www.mroelectric.com/

Magnetic Inspection Laboratory
www.milinc.com

Maheen Enterprises
www.maheenbroaches.com

Mahr Inc.
www.mahr.com

Marposs Corporation
www.marposs.com

Miller Broach
www.millerbroach.com

Mitutoyo America Corporation
www.mitutoyo.com

The Modal Shop
www.themodalshop.com

Modern Gearing
www.modengearing.com

November/December 2018 | GEAR TECHNOLOGY
LUBRICANTS

All of the suppliers listed here are broken down by category (coolants, gear greases, gear oils, plastic gear lubricants, etc.) at www.geartechnology.com.

- **A.W. Chesterton**
 - Chestertontubulants.chesterton.com/en-us
 - Aarna Lube Private Ltd.
 - www.aarnalube.com

- **Aerospace Lubricants, Inc.**
 - www.aerospacelubricants.com

- **American Chemical Technologies, Inc.**
 - www.americanchemtech.com

- **American Refining Group, Inc.**
 - www.amref.com

- **Avalon International Corporation**
 - www.avalongateway.com

- **BASF**
 - www.basf.com/lubes

- **BFK Solutions LLC**
 - blksolutions.com

- **Blaser Swisslube Inc.**
 - www.blaser.com

- **Bodycote Thermal Processing - Melrose Park**
 - www.bodycote.com

- **Brighton Laboratories**
 - www.brightonlabs.com

- **Byington Steel Treating**
 - www.byingtonsteel.com

- **Carborundum Universal Ltd.**
 - www.cumiabrasives.com

- **Castrol Industrial North America Inc.**
 - www.castrol.com/industrial

- **Chemtool Inc.**
 - www.chemtool.com

- **Cimcool Fluid Technology**
 - www.cimcool.com

- **Cortec Corporation**
 - www.cortecce.com

- **Daubert Cromwell**
 - www.daubertcromwell.com

- **Des-Case Corporation**
 - descase.com

- **Dillon Chuck Jaws**
 - 2115 PROGRESS DRIVE
 - SPRINGFIELD, OH 45505
 - Phone: (800) 626-1133
 - Fax: (800) 634-6480
 - sales4@dillonmfg.com
 - www.dillonmfg.com

- **Etna Products, Inc.**
 - www.etna.com

- **ExxonMobil Oil Corp.**
 - www.mobilmotor.com

- **Fuchs Lubricants Company**
 - www.fuchs.com

- **General Magnaplate**
 - www.magnaplate.com

- **Hangsterefer's Laboratories**
 - www.hangsterefer.com

- **Heatbath/Park Metallurgical**
 - www.heatbath.com

- **Hoffmann Filter Corporation**
 - www.hoffmannfilter.com

- **Houghton International**
 - www.houghtonintl.com

- **Hydrotex**
 - www.hydrotexlube.com

- **Industrial Speciality Lubricants Co. (ISLUB)**
 - www.islub.com

- **Istos Inc.**
 - www.islots.com

- **Klöber Lubrication North America L.P.**
 - www.klober.com

Mutscherl Edge Technologies
- mutschleredgetech.com

Nachi America Inc.
- 715 PUSHVILLE RD.
 - GREENWOOD, IN 46143
 - Phone: (317) 971-5001
 - Fax: (317) 971-5000
 - info@nachiamerica.com
 - www.nachiamerica.com

Newage Testing Instruments
- www.hardness testers.com

Ono Sokki Technology, Inc.
- www.onosokki.net

Optical Gaging Products, Inc. (OGP)
- www.ogpnet.com

PCE Instruments
- www.pce-instruments.com/english

Parker Industries Inc.
- www.parkerind.com

Pentatech Metrology LLC
- 6161 WEBSTER STREET
 - DAYTON, OH 45414
 - Phone: (937) 660-8182
 - Fax: (937) 660-8182
 - micholson@pentatech.com
 - www.protoxrd.com
 - info@protoxrd.com
 - Phone: (734) 946-0974

Phase II
- www.phaseiiplus.com

Pinpoint Laser Systems
- pinpointlaser.com

Pioneer Broach Co.
- www.pioneerbroach.com

PlasmaRoute CNC
- www.cncplasmacutterinc.com

Precision Devices, Inc.
- www.preditex.com

Precision Gage Co., Inc.
- www.precisiongageco.com

Proceq USA, Inc.
- www.proceq-usa.com

Promess Inc.
- www.promessinc.com

Proto Manufacturing
- 12350 UNIVERSAL DRIVE
 - TAYLOR, MI 48180
 - Phone: (810) 473-7200
 - Fax: (810) 473-6974
 - info@protordx.com
 - www.protordx.com

Quality Solutions
- www.gs-hardnesstester.com

Quality Vision Services (QVS)
- www.qvsi.com

RAM Optical Instrumentation, Inc.
- www.ramoptical.com

Rayejeet Engineering Specialty Ltd.
- www.rayejeet.com

Renishaw Inc.
- www.renishaw.com

Reska Spline Products Co.
- www.reskasplinegauge.com

Russell Holtbrook & Henderson
- www.ruthol.com

S.S.Tools
- www.sstools.net

SMS Clotherm North America
- www.techinduction.com

SU (Shanghai) Machine & Tools Co., Ltd.
- www.samputeniai.com

Samputeniai S.P.A.
- www.samputeniai.com

Schnyder SA
- JAKÖBSTRAße 52
 - CH-2504 BIÉL
 - SWITZERLAND
 - Phone: +41(22) 344-0406
 - Fax: +41(22) 344-0404
 - george.boon@schnyder.com
 - www.schnyder.com

Sensor Products Inc.
- www.sensorproof.com

SerWeMa GmbH & Co. KG
- www.serversema.de

Stone Gear International, Inc.
- www.stonegear.com

Spline Gage Solutions
- splingesagesolutions.com

Star Cutter Co.
- www.starcutter.com

Star SU LLC
- 5200 PRAIRIE STONE PARKWAY, SUITE 100
 - HOFFMAN ESTATES, IL 60192
 - Phone: (847) 649-1450
 - Fax: (847) 649-0112
 - sales@star-su.com
 - www.star-su.com

Stone Tucker Instruments Inc.
- www.stone-tucker.com

Stotz Gaging Co.
- www.stotz-usa.com

Sunnen Products Company
- www.sunnen.com

Super Hobs & Broaches Pvt. Ltd.
- www.supercuttingtools.com

Surplex GmbH
- www.surplex.com

TECO Werkzeugmaschinen GmbH & Co.
- www.teco-germany.com

Technoellence
- www.broachindia.com

TechnoMax Inc.
- www.technomax-j.com

Tianjin No.1 Machine Tool Works
- www.tm-tc.com

Tokyo Technical Instruments USA Inc.
- www.ti-geartec.jp

USA Borescopes
- www.USABorescopes.com

United Calibration Corp.
- www.tennisoltest.com

United Tool Supply
- www.united-tool.com

View Micro-Metrology
- www.viewmm.com

WMZ - Werkzeugmaschinenbau Ziegenhain GmbH
- www.wmz-gmbh.de

54 GEAR TECHNOLOGY | November/December 2018
MACHINE TOOLS

All of the suppliers listed here are broken down by category (milling machines, turning machines, grinding machines, etc.) at www.geartechnology.com.

2L Inc. www.2Linc.com
A&A Coatings www.thealspray.com
ADF Systems Ltd. www.adfsys.com
ANCA, Inc. www.anca.com

Accu-Cut Diamond Tool Co. www.accucutdiamond.com
Aceta www.aceta.com/robotics-products/gripper-systems/
Acme Manufacturing Co. www.acmenfg.com
Advico www.advice.co.uk
Aksan Steel Forging www.aksanforging.com
Alliance Broach & Tool www.alliancebroach.com
Almco Finishing & Cleaning Systems www almco.com
American Broach & Machine Co. www.americanbroach.com
Ampere Metal Finishing www.amperemetal.com
Andec Mfg. Ltd. www.andec.ca
Arbortech Corporation www.arbortech.com
BFK Solutions LLC bfk-solutions.com
BTS Broaching Tools www.btsbroaching.com
Balantar Corp. www.balantar.com
Barber-Colman, Div of Bourn & Koch www.bourn-koch.com
Bates Technologies, LLC www.batestech.com
Becker GearMeisters, Inc. www.maagmachines.com
Best Technology Inc., www.bstech.com
Bohle Machine Tools, Inc. www.bmbohle.com

Bourn & Koch Inc. www.bourn-koch.com
Breton USA www.bretonusa.com
Brightron Laboratories www.brightronlabs.com
Broaching Machine Specialties www.broachingmachine.com
Buderus Schleiftechnik GmbH www.budorus-schleiftechnik.de
C & B Machinery www.cbmachinery.com
CNC Center www.cnccenter.com
CNC Design Pty Ltd www.cncdesign.com
Capital Equipment LLC www.capital-equip.com
Capital Tool Industries www.capital-tool.com
Carborundum Universal Ltd. www.carborundum.com
Castrol Industrial North America Inc. www.castrol.com/industrial
Cleaning Technologies Group/Ransohoff www.cij.com
Climco Industries Corp. www.climcoindustries.com
Cleveland Deburring Machine Co. www.cdmach.com
Colonial Tool Group www.colonialtool.com

Comco Inc. www.comcoinc.com
Cortec Corporation www.cortecvci.com
Cosen Saws USA www.cosen-saws.com
Creative Automation, Inc. www.ccreative.com
Crest Ultrasonics Corp. www.crest-ultrasonics.com
Curtiss-Wright Surface Technologies www.cwst.com
D.C. Morrison Company www.morrisoncompany.com
DMG MORI USA www.dmgmoriusa.com
DVS Universal Grinding GmbH www.ugrid.de
Danobat Machine Tool Co. Inc. www.danobatusa.com
Daubert Cromwell www.daubertcromwell.com
Des-Case Corporation www.des-case.com
Diskus Werke Schleiftechnik GmbH www.diskus-werke.de
Drake Manufacturing Services Co., LLC www.drmfg.com
Duffy Company, The www.duffycompany.com
EDAC Machinery www.edacmachinery.com
EMAG L.C.C. www.emag.com
Eagle PLC www.eagleplc.com
ElectroHeat Induction www.electroheatinduction.com
Eltro Services, Inc. www.eltroservices.com
Engineered Abrasives www.engineeredabrasives.com
Erwin Junker Machinery, Inc. www.junker-group.com
Euro-Tech Corporation www.eurotechcorp.com
FPM Heat Treating www.fpmht.com
Felsomat USA Inc. www.felsomat.com
Fribirmatic Metal Cleaning Division www.metalcleaning-fribigmatic.com
Flexbar Machine Corporation www.flexbar.com
Foerster Instruments Incorporated www.foerstergroup.com
Forst Technologie GmbH & Co. KG www.forst-online.de
Fuji Machine America Corp. www.fujimachinery.com
Furnaces, Ovens & Baths, Inc. www.fobrenc.com
GH Induction Atmospheres www.gh-ind.com
GMN USA LLC www.gmnusa.com
Gabol Inc. www.gabolinc.com
Gehring L.P. www.gehring.de
General Broach Company www.generalbroach.com
General Magnaplate www.magnaplate.com

Lubegard/International Lubricants Inc. www.lubegard.com
Lubrication Engineers www.lslubricants.com

Lubadplate Lubricants Co. 129 LOCKWOOD STREET
NEWARK, NJ 07105
Phone: (973) 590-4402
Fax: (800) 347-5329
www.lubeplate.com

ML Lubrication Inc. www.ml-lubrication.com
Microsurface Corporation wwwwcsocoating.com
Monktons Machine Tools, LLC www.mmtproductivity.com/
Motultech www.motul.com
Nye Lubricants www.nylelubricants.com

Oelheld U.S., Inc. 1100 WEESMANN DRIVE
WEST DUNDEE, IL 60118
Phone: (847) 531-8901
Fax: (847) 531-8511
hutec-us@oelheld.com
1100 WESEMANN DRIVE
WEST DUNDEE, IL 60118
Phone: (847) 531-8901
Fax: (847) 531-8511
www.oelheld-us.com
2500 KISHWAUKEE STREET
P3
55
November/December 2018 | GEAR TECHNOLOGY
Gleason Corporation
1000 UNIVERSITY AVENUE
P.O. BOX 22970
ROCHESTER, NY 14692-2970
Phone: (585) 473-1000
Fax: (585) 461-4348
sales@gleason.com
www.gleason.com

Gleason-Hurth Tooling GmbH
MÖDSACHER STR. 42-46
D-80809 MÜNCHEN
GERMANY
Phone: 011-49-89-35401-0
www.gleason.com

GofHz Inc.
www.gofhz.com

Goldstein Gear Machinery LLC
www.goldsteingearmachinery.com

Great Lakes Gear Technologies, Inc.
www.greatlakesgeartech.com

Greenerd Press & Machine Co. Inc.
www.greenerd.com

Guardair Corporation
www.guardair.com

HARO Technologies
www.haro-technologies.com

HPI Processes, Inc.
www.hpiro.com/

Haas Multigrind LLC
www.multigrind.com

Hans-Juergen Geiger Maschinen-Vertrieb GmbH
www.geiger-germany.com

Hardinge Inc.
www.hardinge.com

Havlik International Machinery Inc.
www.havlikinternational.com

Heatbath/Park Metallurgical
www.heatbath.com

Heiko Machine Tools
www.heikomachinetools.com

Heller Machine Tools
www.heller-machinetools.com

Hines Industries
www.hinesindustries.com

HobSource Inc.
www.hosource.com

Hoffmann Filter Corporation
www.hoffmannfilter.com

Hy-Pro Filtration
www.hyprofiltration.com

IHI Hauzer Techno Coating B.V.
www.hauzer.nl

IHI Ionbond Inc.
www.ionbond.com

IMPCO Microfinishing
www.impco.com

Index Corporation
us.index-traub.com

Index-Werke GmbH & Co. KG Hahn & Tressky
www.index-traub.com

Industrial Hard Carbon LLC
industrialhardcarbon.com

International Tool Machines (ITM)
www.itmf.com

Interstate Tool Corp.
www.itoolcorp.com

Ion Vacuum (IVAC) Technologies Corp.
www.ivactech.com

J. Schneebeger Corp.
www.schneebeger-us.com

Jenfab
www.jenfab.com

K+S Services, Inc.
www.k-and-s.com

KKG International Corp.
www.kkgi.com

Kennefalt Inc.
www.kennefalt.com

Kinefac Corporation
www.kinefac.com

Klingelnberg AG
BINZMÜHLESTRASSE 171
CH-8050 ZURICH
SWITZERLAND
Phone: (+41) 44-2787979
Fax: (+41) 44-2781594
info@klingelnberg.com
www.klingelnberg.com

Klingelnberg America Inc.
118 E. MICHIGAN AVENUE, SUITE 200
SALINE, MI 48176
Phone: (734) 470-6278
Fax: (734) 316-2158
kia.info@klingelnberg.com
www.klingelnberg.com

Klingelnberg GmbH
PETEERSTRASSE 45
HUECKEWSAGEN 42499
GERMANY
Phone: (+49) 2192-8190
Fax: (+49) 2192-81200
info@klingelnberg.com
www.klingelnberg.com

Knuth Machine Tools USA, Inc.
www.knuth-usa.com

Kollmorgen
www.kollmorgen.com/en-us/home/

Kwikmark Inc.
www.kwikmark.com

Lafert North America
www.lafertusa.com

Lambda Technologies
www.lambdaitech.com

Laser Tools Co.
www.lasertoolsco.com

Liebherr America
1465 WOODLAND DR.
SALINE, MI 48176
Phone: (734) 429-7225
Fax: (734) 429-2294
info.egt@liebherr.com
www.liebherr.com

Liebherr-Verzahntechnik GmbH
KAUFBEURER STRASSE 141
D-74673 KEMPTEN
GERMANY
Phone: (+49) 831-786-1279
Fax: (+49) 831-786-1279
info.egt@liebherr.com
www.liebherr.com

Longevity Coatings
www.longevitycoatings.com

Luren Precision

MFT Manufacturing Process Technologies
www.mftinc.com

MRO Electric and Supply
www.mroelectric.com/

Machine Tool Builders
7723 BURDEN ROAD
MACHESNEY PARK, IL 61115
Phone: (815) 636-7502
Fax: (815) 636-5912
info@pittler.de
www.pittler.de

Machine Tool Solutions, Inc.
machtooinc.com

Mazak Corporation
www.mazakusa.com

Meccanica Nova Corporation
www.novagrinders.com

Meister Abrasives USA
www.meister-abrasives.com/USA

Metallurgical High Vacuum Corp.
www.metthvac.com

Metallurgical Processing, Inc.
www.mpmetalrtreating.com

Methods Machine Tools Inc.
www.methodsmachine.com

Miller Broach
www.millerbroach.com

Mitsubishi Heavy Industries America
MACHINE TOOL DIVISION
46992 LIBERTY DRIVE
WIXOM, MI 48393
Phone: (248) 669-6136
Fax: (248) 669-6174
brenda_motzell@mhiqaq.com
www.mitsushigearecenter.com

Modern Gearing
www.modergearing.com

Moncktons Machine Tools, LLC
www.mmtproduction.com

Mutschler Edge Technologies
www.mutschleredgetech.com

NCT America Corporation
www.nctmc.com

Nachf America Inc.
715 PUSHLIVE RD.
GREENWOOD, IN 46143
Phone: (317) 536-1001
Fax: (317) 536-1011
info@nchameric.com
www.nachfamerica.com

Nagel Precision
www.nagelusa.com

National Heat Treat
nationalheatreat.com

Normac, Inc.
www.normac.com

Oelheld U.S., Inc.
1700 WEISEMANN DRIVE
WEST DUNDEE, IL 60118
Phone: (847) 531-8501
Fax: (847) 531-8511
hutec-us@oelheld.com
www.oelheld-us.com

Oerlikon Balzers USA
www.oerlikon.com/balzers/us

Ohio Broach & Machine Co.
www.ohiobroach.com

Okuma America Corporation
www.okuma.com

PTG Holroyd
www.holroyd.com

Penna Flame Industries
www.pennafame.com

Penta Gear Metrology LLC
6161 WEBSTER STREET
DAYTON, OH 45414
Phone: (937) 680-6182
michelson@pentagear.com
www.gearinspection.com

Philadelphia Carbide Co.
www.philacarbide.com

Phoenix Inc.
www.phoenix-inc.com

Pinpoint Laser Systems
pinpointlaser.com

Pioneer Broach Co.
www.pioneerbroach.com

Pfittler T&S GmbH
JOHANNES-GUTENBERG-STR. 1
DIETZENBACH HESSEN 63128
GERMANY
Phone: (+49) 6074-4872-291
christian.thiel@pfittler.de
www.pfittler.de

PlasmaRoute CNC
www.cnxplasmacutterinc.com

Pittler T&S GmbH
JOHANNES-GUTENBERG-STR. 1
DIETZENBACH HESSEN 63128
GERMANY
Phone: (+49) 6074-4872-291
christian.thiel@pfittler.de
www.pfittler.de

PlasmaRoute CNC
www.cnxplasmacutterinc.com
RESOURCES

All of the suppliers listed here are broken down by category (associations, education, publications, research institutes, etc.) at www.geartechgroup.com.

AGMA - American Gear Manufacturers Association
www.agma.org

AMT - The Association for Manufacturing Technology
www.amtonline.org

ASM International
www.asminternational.org

American Bearing Manufacturers Association
www.americanbearings.org

American Wind Energy Association
www.awea.org

Balanstar Corp
www.balanstar.com

Banyan Global Technologies LLC
www.banyangt.com

Buderus Schleiftechnik GmbH
www.buderus-schleiftechnik.de

CTI - Car Training Institute
www.car-training-institute.com

CVS Tooling GmbH
www.cvs-tooling.de

Drive Systems Technology, Inc.
www.gear-dtc.com

EES KISSsoft GmbH
www.ees-kisssoft.ch

FVA GmbH
www.fva-service.de

FZG
www.fzg.mw.tum.de

Forging Industry Association
www.forging.org

Gear Consulting Group
www.gearconsultinggroup.com

Gear Research Institute
APPLIED RESEARCH LABORATORY
PENN STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
Phone: (814) 865-5822
aci101@arl.psu.edu
www.gearresearch.org

Gehring L.P.
www.gehring.de

Gleason Corporation
1000 UNIVERSITY AVENUE
P. O. BOX 22970
ROCHESTER, NY 14692-2970
Phone: (585) 473-1000
Fax: (585) 461-4348
sales@gleason.com
www.gleason.com

Gleason Cutting Tools Corporation
1351 WINDSOR RD.
LOVES PARK, IL 61111
Phone: (815) 877-8900
Fax: (815) 877-0264
gcte@gleason.com
www.gleason.com

Gleason-Hurth Tooling GmbH
MOOSACHER STR. 42-46
D-80809 MUENCHEN
GERMANY
Phone: 011-49-89-35401-0
www.gleason.com

Goldstein Gear Machinery LLC
www.goldsteinmachinery.com

Guardair Corporation
www.guardair.com

Hannover Fairs USA
www.hfusa.com

The Herring Group Inc.
www.heat-treat-doctor.com

KISSsoft AG
ROSENGARTENSTRASSE 4
BUBIKON 8608
SWITZERLAND
Phone: 0041 (0)55 254 20 70
Fax: 0041 (0)55 254 20 71
info@KISSsoft.ag
www.KISSsoft.ag

Kapp Technologies
2970 WILDERNESS PLACE
BOULDER, CO 80301
Phone: (303) 447-1130
Fax: (303) 447-1131
info-USA@kapp-niles.com
www.kapp-niles.com

Koepfer America
koepferamerica.com

Lafert North America
www.lafertna.com

Lafert North America
www.lafertna.com

Praewema Antriebstechnik GmbH
www.praewema.de

Precision Finishing Inc.
www.precisionfinishinginc.com

Precision Spindle & Accessories Inc.
www.precisionspindlinc.com

Preco Inc.
www.precoinc.com

Pro-Beam USA
www.pro-beam.com

Promess Inc.
www.promessinc.com

QC American
www.qcamerican.com

Röders GmbH
www.roeders.de

R. A. Heller
www.raheller.com

RAM Optical Instrumentation, Inc.
www.ramoptical.com

Reade Advanced Materials
www.reade.com

Redin Production Machine
www.redinmachinemfg.com

Renegades Parts Washers and Detergents
www.renagademfg.com

Reniashaw Inc.
www.reniashaw.com

Rewitech GmbH
www.rewitech.com

Riten Industries, Inc.
www.riten.com

Roberts Sinto Corp.
www.robertssinto.com

Russell Holbrook & Henderson
www.tribosolutions.com

SCHUNK
www.schunk.com

SETCO Precision Spindles
www.setcosusa.com

SMS Eltromet North America
www.techinduction.com

SWD Inc.
www.swdinc.com

Samputensili S.p.A.
www.samputensili.it

Schuch LLC
www.schutteusa.com

SerWeMa GmbH & Co. KG
www.serwema.de

Slater Tools Inc.
www.slater.tools

Sloane Gear International, Inc.
www.sloangear.com

Star Cutter Co.
www.starcutter.com

Star SU LLC
5200 PRAIRIE STONE PARKWAY, SUITE 100
HOFFMAN ESTATES, IL 60192
Phone: (847) 649-1450
Fax: (847) 649-0112
sales@star-su.com
www.star-su.com

Stotz Gaging Co.
www.stotz-usa.com

Sunnen Products Company
www.sunnen.com

Super Hobs & Broaches Pvt. Ltd.
www.supercuttingtools.com

Surplex GmbH
www.surplex.com

TECO Werkzeugmaschinen GmbH & Co. KG
www.teco-germany.com

Titanium Coating Services Inc.
www.tpdamerica.com

Toolink Engineering
www.toolink-eng.com

Toolmex Corporation - Lathe group
www.toolmexlathe.com

Toshiba Machine Co.
www.toshiba-machine.com

Tribo Surface Engineering LLC
www.trbiosurfaceengineering.com

Ty Miles, Inc.
www.tymiles.com

U.S. Equipment
www.usequipment.com

Ultrasonic Equipment Co.
www.ultramic-technologies.com

Ultrasound LLC
www.ultrasonicllc.com

United Grinding
www.unigrm.com

Usach Technologies Inc.
www.usach.com

VaporKote, Inc.
www.vaporkote.com

Venture Mfg. Co.
www.venturemfgco.com

View Micro-Metrology
www.viewmicro.com

Voelker Sensors, Inc.
www.voelker-sensors.com

WFL Millturn Technologies, Inc
www.wflusa.com

WMZ - Werkzeugmaschinenbau Ziegenhain GmbH
www.wmz-gmbh.de

WardJet
www.wardjet.com

Watts Mfg. Inc.
www.watts.com

Weldon Solutions
www.weldonsolutions.com

West Michigan Spline, Inc.
www.westmichiganspline.com

Westfalia Technologies
www.westfaliausa.com

Westminster Machine Tools Ltd.
www.wmtm.co.uk

Wheelabrator
www.wheelabratorgroup.com

Wolverine Broach Co., Inc.
www.wolverinebroach.com

Yaskawa Motoman
www.motoman.com

AMT - The Association for Manufacturing Technology
www.amtonline.org

ASM International
www.asminternational.org

American Bearing Manufacturers Association
www.americanbearings.org

American Wind Energy Association
www.awea.org

Balanstar Corp
www.balanstar.com

Banyan Global Technologies LLC
www.banyangt.com

Buderus Schleiftechnik GmbH
www.buderus-schleiftechnik.de

Goldstein Gear Machinery LLC
www.goldsteinmachinery.com

Guardair Corporation
www.guardair.com

Hannover Fairs USA
www.hfusa.com

The Herring Group Inc.
www.heat-treat-doctor.com

KISSsoft AG
ROSENGARTENSTRASSE 4
BUBIKON 8608
SWITZERLAND
Phone: 0041 (0)55 254 20 70
Fax: 0041 (0)55 254 20 71
info@KISSsoft.ag
www.KISSsoft.ag

Kapp Technologies
2970 WILDERNESS PLACE
BOULDER, CO 80301
Phone: (303) 447-1130
Fax: (303) 447-1131
info-USA@kapp-niles.com
www.kapp-niles.com

Koepfer America
koepferamerica.com

Lafert North America
www.lafertna.com
CATEGORY LISTINGS

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banyan Global Technologies LLC</td>
<td>www.banyangt.com</td>
</tr>
<tr>
<td>Balanstar Corp</td>
<td>www.balanstar.com</td>
</tr>
<tr>
<td>BTS Broaching Tools</td>
<td>www.brostakimsanayi.com.tr</td>
</tr>
<tr>
<td>Balanstar Corp</td>
<td>www.balanstar.com</td>
</tr>
<tr>
<td>Banyan Global Technologies LLC</td>
<td>www.banyangt.com</td>
</tr>
<tr>
<td>Bates Technologies, LLC</td>
<td>www.batesotech.com</td>
</tr>
<tr>
<td>Becker GearMeisters, Inc.</td>
<td>www.maagmachines.com</td>
</tr>
<tr>
<td>Best Technology Inc.</td>
<td>www.besttechnologyinc.com</td>
</tr>
<tr>
<td>Beyta Gear Service</td>
<td>www.beytagar.com</td>
</tr>
<tr>
<td>Bill's Machine Repair</td>
<td>www.billsmachinerrepair.com</td>
</tr>
<tr>
<td>Borescopes-R-U</td>
<td>www.borescopesrus.com</td>
</tr>
<tr>
<td>Bourn & Koch Inc.</td>
<td>www.bourn-koch.com</td>
</tr>
<tr>
<td>Broach Masters/Universal Gear Co.</td>
<td>www.broachmasters.com</td>
</tr>
<tr>
<td>Broaching Technologies, LLC</td>
<td>www.broachmasters.com</td>
</tr>
<tr>
<td>Bruce Cox Engineering Corporation</td>
<td>www.bcoxengineering.com</td>
</tr>
<tr>
<td>Bushler - An ITW Company</td>
<td>www.bushler.com</td>
</tr>
<tr>
<td>C & B Machinery</td>
<td>www.cbmachinery.com</td>
</tr>
<tr>
<td>CNC Center</td>
<td>www.cnccenter.com</td>
</tr>
<tr>
<td>CNC Design Pty Ltd</td>
<td>www.cncdesign.com</td>
</tr>
<tr>
<td>Canada Broach</td>
<td>www.canadabroach.com</td>
</tr>
<tr>
<td>Capital Tool Industries</td>
<td>www.capital-tool.com</td>
</tr>
<tr>
<td>Carbide Tool Services, Inc.</td>
<td>www.carbidetool.com</td>
</tr>
<tr>
<td>Carl Zeiss Industrial Metrology LLC</td>
<td>www.zeiss.com/metrology</td>
</tr>
<tr>
<td>Cincinnati Gearing Systems Inc.</td>
<td>www.cincinnatigearingsystems.com</td>
</tr>
<tr>
<td>Curtiss-Wright Surface Technologies</td>
<td>www.cwst.com</td>
</tr>
<tr>
<td>Daubert Cromwell</td>
<td>www.daubertcromwell.com</td>
</tr>
<tr>
<td>Delta Inspection</td>
<td>www.deltainspect.com</td>
</tr>
<tr>
<td>Diametall AG</td>
<td>www.diametall.ch</td>
</tr>
<tr>
<td>Diehl Engineering Company, Inc.</td>
<td>www.diehlgearbox.com</td>
</tr>
<tr>
<td>DixeTech CNC</td>
<td>www.dixeitech.com</td>
</tr>
<tr>
<td>Drive Systems Technology, Inc.</td>
<td>www.gear-doc.com</td>
</tr>
<tr>
<td>EES KISSsoft GmbH</td>
<td>www.ees-kisssoft.ch</td>
</tr>
<tr>
<td>EMAG L.L.C.</td>
<td>www.emag.com</td>
</tr>
<tr>
<td>Eagle Tool Company Inc.</td>
<td>www.eaglebroach.com</td>
</tr>
<tr>
<td>Eaglemaster Inc.</td>
<td>www.eaglemasterinc.com/</td>
</tr>
<tr>
<td>East-Lind Heat Treat, Inc.</td>
<td>www.eastlind.com</td>
</tr>
<tr>
<td>ElectoHeat Induction</td>
<td>www.electoheatinduction.com</td>
</tr>
<tr>
<td>Electronics Inc.</td>
<td>www.electronics-inc.com</td>
</tr>
<tr>
<td>Elwood City Forge</td>
<td>www.elwoodcityforge.com</td>
</tr>
<tr>
<td>Eltro Services, Inc.</td>
<td>www.eltroservices.com</td>
</tr>
<tr>
<td>Engineered Abrasives</td>
<td>www.engineeredabrasives.com</td>
</tr>
<tr>
<td>Estudio PI & ltd, a</td>
<td>www.estudioolina.com</td>
</tr>
<tr>
<td>Excel Gear</td>
<td>www.xlsxgear.com</td>
</tr>
<tr>
<td>FPM Heat Treating</td>
<td>www.fpmht.com</td>
</tr>
<tr>
<td>FVA GmbH</td>
<td>www.fva-service.de</td>
</tr>
<tr>
<td>Forst Technologie GmbH & Co. KG</td>
<td>www.forst-online.de</td>
</tr>
<tr>
<td>Framo Morat, Inc.</td>
<td>www.framo-morat.com</td>
</tr>
<tr>
<td>Frenco GmbH</td>
<td>www.frenco.com</td>
</tr>
<tr>
<td>Friedrich Gloor Ltd.</td>
<td>www.gloorag.ch</td>
</tr>
<tr>
<td>Furnaces, Ovens & Baths, Inc.</td>
<td>www.fabicnc.com</td>
</tr>
<tr>
<td>GMN USA LLC</td>
<td>www.gmnusa.com</td>
</tr>
<tr>
<td>GWJ Technology GmbH</td>
<td>www.gwj.com</td>
</tr>
<tr>
<td>Gear Consulting Group</td>
<td>www.gearconsultinggroup.com</td>
</tr>
<tr>
<td>Gear Consulting Services of Cincinnati LLC</td>
<td>octave@fuse.net</td>
</tr>
<tr>
<td>Gehring L.P.</td>
<td>www.gehringe.de</td>
</tr>
<tr>
<td>General Magnaplate</td>
<td>www.magnaplate.com</td>
</tr>
<tr>
<td>Gleason Corporation</td>
<td>www.gleason.com</td>
</tr>
<tr>
<td>Gleason Cutting Tools Corporation</td>
<td>www.gleason.com</td>
</tr>
<tr>
<td>Gleason Cutting Tools Corporation</td>
<td>www.gleason.com</td>
</tr>
<tr>
<td>Gleason Metrology Systems</td>
<td>www.gleason.com</td>
</tr>
<tr>
<td>Gleason Works (India) Private Ltd.</td>
<td>www.gleason.com</td>
</tr>
</tbody>
</table>

SERVICES

All of the suppliers listed here are broken down by category (consulting, hob sharpening, gear engineering, tool coating, machine tool repair, etc.) at www.geartechnology.com.

A&A Coatings
- www.thermalspray.com

ATS - Advanced Technology Services
- www.advancedtech.com

Acedes Gear Tools
- www.acedes.co.uk

Advanced Heat Treat Corp.
- www.ahtweb.com

Airflow Sciences Corporation
- www.airflowsciences.com

Aksan Steel Forging
- www.aksanforging.com

American Broach & Machine Co.
- www.americana broach.com

Ampere Metal Finishing
- www.amperemetal.com

Andec Mfg. Ltd.
- www.andec.ca

Anthony Best Dynamics Ltd
- www.absuk.co.uk

Apex Broaching Systems
- www.apexbroach.com

BG&S Peening and Consulting LLC
- www.peening-consultants.com

BTS Broaching Tools
- www.brostakimsanayi.com.tr

Balanstar Corp
- www.balanstar.com

Banyan Global Technologies LLC
- www.banyangt.com

Barber-Colman, Div of Bourn & Koch
- www.bourn-koch.com

Bates Technologies, LLC
- www.batesotech.com

Becker GearMeisters, Inc.
- www.maagmachines.com

Best Technology Inc.
- www.besttechnologyinc.com

Beyta Gear Service
- 6N230 COUNTY FARM ROAD
 - WINFIELD, IL 61910
 - Phone: (630) 209-1652
 - chuck@beytagar.com
 - www.beytagar.com

Bill’s Machine Repair
- www.billsmachinerrepair.com

Borescopes-R-U
- www.borescopesrus.com

Bourn & Koch Inc.
- 2500 KISHWAUKEE STREET
 - ROCKFORD, IL 61104
 - Phone: (815) 965-4013
 - Fax: (815) 965-0019
 - sales@bourn-koch.com
 - www.bourn-koch.com

Broach Masters/Universal Gear Co.
- 1805 INDUSTRIAL DRIVE
 - AUBURN, CA 95603
 - Phone: (800) 563-3442
 - Fax: (530) 885-8157
 - sales@broachmasters.com
 - www.broachmasters.com

Broaching Technologies, LLC
- keyway-spline-broaching.com

Bruce Cox Engineering Corporation
- www.bcoxengineering.com

Bushler - An ITW Company
- www.bushler.com

C & B Machinery
- www.cbmachinery.com

CNC Center
- www.cnccenter.com

CNC Design Pty Ltd
- www.cncdesign.com

Canada Broach
- www.canadabroach.com

Capital Tool Industries
- www.capital-tool.com

Carbide Tool Services, Inc.
- www.carbidetool.com/

Carl Zeiss Industrial Metrology LLC
- www.zeiss.com/metrology

Cincinnati Gearing Systems Inc.
- www.cincinnatigearingsystems.com

Curtiss-Wright Surface Technologies
- www.cwst.com

Daubert Cromwell
- www.daubertcromwell.com

Delta Inspection
- www.deltainspect.com

Diametall AG
- www.diametall.ch

Diehl Engineering Company, Inc. PS
- www.diehlgearbox.com

DixeTech CNC
- www.dixeitechrcm.com

Drive Systems Technology, Inc.
- www.gear-doc.com

EES KISSsoft GmbH
- www.ees-kisssoft.ch

EMAG L.L.C.
- www.emag.com

Eagle Tool Company Inc.
- www.eaglebroach.com

Eaglemaster Inc.
- www.eaglemasterinc.com
CATEGORY LISTINGS

Surface Finishing Equipment Co. www.sfcindia.net
Titanium Coating Services Inc. www.pvdamerica.com
TopGun Consulting LLC www.topgunconsulting.com
Ty Miles, Inc. www.tymiles.com
U.S. Equipment www.usequipment.com
USA Borescopes www.USABorescopes.com
Ultramatic Equipment Co. www.ultramatic.com
United Tool Supply www.unitedtool.com
United Tool Supply Ltd. www.unitedtoolsupply.com
VFA Engineering Group failure-analysis-durability.com
VaporKote, Inc. www.vaporkote.com
Victrex Gear Solutions www.victrex.com
WMS - Werkzeugmaschinenbau Ziegenhain GmbH www.wms-gmbh.de
WPC Treatment Co., Inc. www.wpctreatment.com
Welter Group www.welter-lahr.com
West Michigan Spline, Inc. www.westmichiganspline.com
Willrich Precision Instrument Company willrich.com

SOFTWARE

All of the suppliers listed here are broken down by category (custom software, gear design software, shop management software, etc.) at www.geartechnology.com.

A.G. Davis - AA Gage www.agdavis.com
AKGears, LLC www.akgears.com
ATS - Advanced Technology Services www.atsadvancedtech.com
Acme Manufacturing Co. www.acmefmg.com
Andec Mfg. Ltd. www.andec.ca
Anthony Best Dynamics Ltd www.abd.uk.com
Artis Division of Marposs www.artis.de
Ash Gear & Supply www.ashgear.com
Bourn & Koch Inc. 2500 KISHWAKEE STREET ROCKFORD, IL 61014
Phone: (815) 965-4013 Fax: (815) 963-0819
sales@bourn-koch.com
Broach Masters/Universal Gear Co. 1065 INDUSTRIAL DRIVE AUBURN, CA 95603
Phone: (800) 963-4342 Fax: (800) 963-4342
sales@broachmasters.com
Camnetics, Inc. camnetics.com
Carl Zeiss Industrial Metrology LLC www.zeiss.com
Community PC www.meshingwithgears.com
DMG MORI USA www.dmgusa.com
Diametal AG www.diametal.ch
Donner+Fisher AG www.dfpag.ch
Dontyne Systems www.dontyne.com
Drake Manufacturing Services Co., LLC www.drakemfg.com
Drive Systems Technology, Inc. www.gear-doc.com
EES KiSsoft GmbH www.ees-kissoft.ch
ESI ITI GmbH www.itisim.com
Eltro Services, Inc. www.eltroserVICES
Erwin Junker Machinery, Inc. www.junker-group.com
Estudio Piñolida, a www.estudiopinola.com
Eulkind CAD/CAM AG www.eulkind-cadcam.de
Euro-Tech Corporation www.eurotechcorp.com
Excel Gear 11883 MAIN STREET RONSCE, IL 61073
Phone: (815) 623-3414 Fax: (815) 623-3314
Chinn@excelgear.com
Excelgear.com www.excelgear.com
FARO Technologies, Inc. www.faro.com
FPM Heat Treating www.fpmht.com
FVA GmbH www.fva-service.de
FastCAM Inc. www.fastcam.com
Frenco GmbH www.frenco.de
GWW Technology GmbH www.gww.de
Gleason Corporation 1000 UNIVERSITY AVENUE P.O. BOX 22390 ROCHESTER, NY 14602-2970
Phone: (585) 473-1000 Fax: (585) 461-4348
sales@gleason.com
Gleason.com www.gleason.com
Gleason Metrology Systems 360 PROGRESS ROAD DAYTON, OH 45449
Phone: (937) 859-8273
sales@gleason.com
Gleason-Metrology@gleason.com
Great Lakes Gear Technologies, Inc. www.greatlakesgeartech.com
Hellier Machine Tools www.hellier-machinetools.com
Hexagon Industriesoftware GmbH www.hexagon.de
Hexagon Metrology www.hexagonmetrology.us
HiTech e Soft www.hitechesoft.com
Involute Simulation Softwares Inc. www.hygears.com
Kisssoft AG ROSENBERGSTRASSE 4 BUBikon 8608 SWITZERLAND
Phone: 0041 (0)55 254 20 70
Fax: 0041 (0)55 254 20 71
info@KiSsoft.ag
KiSsoft.com www.kisssoft.com
Kisssoft/Gleason 2167 US HIGHWAY 45 NORTH EAGLE RIVER WI 54521
Phone: (715) 477-3828 Fax: (888) 623-7289
info@KiSsoft.com
Kisssoft.com www.kisssoft.com
KHMKA BROACH & Spline Gauge www.khmkbroach.com
Klingelnberg AG BINGAMUNDBRASSE 171 CH-8050 ZURICH SWITZERLAND
Phone: +41 (0) 44-2787879
Fax: +41-44-2781594
info@klingelnberg.com
Klingelnberg.com www.klingelnberg.com
Klingelnberg GmbH PETERSTRASSE 45 HUECKESWAGEN 42499 GERMANY
Phone: (+49) 2192-810
Fax: (+49) 2192-81200
info@klingelnberg.com
Klingelnberg.com www.klingelnberg.com
Kollmorgen www.kollmorgen.com/en-us/home/
Liebherr America 1465 WOODLAND DR. SALINE, MI 48176
Phone: (734) 429-7225
Fax: (734) 429-7224
info.1gte@liebherr.com
www.liebherr.com
Mesys AG www.mesys.ag
MSC Software Corp. www.mscsoftware.com
MTI Systems, Inc. www.mtisystems.com
Machine Tool Builders 7722 BURDEN ROAD MACHESNEY PARK, IL 61115
Phone: (815) 638-7502
Fax: (815) 638-5912
amin@machinetoolbuilders.com
www.machinetoolbuilders.com
Marposs Corporation www.marposs.com
Mitutoyo America Corporation www.mitutoyo.com
NORMAC, Inc. www.normac.com
Orbitless Drives Inc. www.orbitless.com
PTG Holroyd www.holroyd.com
Penta Gear Metrology LLC 6181 WEBSTER STREET DAYTON, OH 45414
Phone: (937) 698-8162
mnicholson@pentagear.com
Gearinspection.com www.gearinspection.com
Point Laser Systems pinpointlaser.com
Precision Gage Co., Inc. www.precisiongageco.com
Prime Technologies www.gear-tasters.com
Promess Inc. www.promessinc.com
All of the suppliers listed here are broken down by category (auctioneers, used machinery dealers, etc.) at www.geartechnology.com.
GEARS, GEAR DRIVES AND POWER TRANSMISSION COMPONENTS

The following advertisers in this issue of *Gear Technology* will appear with hundreds of other suppliers in the Buyers Guide in the December 2018 issue of *Power Transmission Engineering*. They can also be found online at www.powertransmission.com.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Email/Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>B & R Machine and Gear Corp.</td>
<td>4809 U.S. HWY. 45 SHARON TN 38255</td>
<td>Phone: (731) 456-2636 or (800) 238-0651 Fax: (731) 456-3073 inquiry@brgear.com www.brgear.com</td>
<td></td>
</tr>
<tr>
<td>Lubriplate Lubricants Co.</td>
<td>129 LUCKWOOD STREET NEWARK, NJ 07105</td>
<td>Phone: (873) 589-4432 Fax: www.lubriplate.com</td>
<td></td>
</tr>
<tr>
<td>McInnes Rolled Rings</td>
<td>1533 EAST 12TH STREET ERIE, PA 16511</td>
<td>Phone: (814) 459-4495 Fax: (814) 459-8413 sales@mcring.com www.mcinnesrolledrings.com</td>
<td></td>
</tr>
<tr>
<td>Circle Gear & Machine Co.</td>
<td>1511 S. 55TH COURT CICERO, IL 60804</td>
<td>Phone: (708) 652-1000 Fax: (708) 652-1100 sales@circlegear.com www.circlegear.com</td>
<td></td>
</tr>
<tr>
<td>Midwest Gear & Tool, Inc.</td>
<td>15700 COMMON RD. ROSEVILLE, MI 48066</td>
<td>Phone: (586) 779-1300 Fax: (586) 779-6790 mwgear@midwestgear.net www.powertransmission.com/copage/956</td>
<td></td>
</tr>
<tr>
<td>Excel Gear</td>
<td>11865 MAIN STREET ROSEVILLE, IL 60018</td>
<td>Phone: (815) 623-3414 Fax: (815) 623-3314 chin@excelgear.com www.excelgear.com</td>
<td></td>
</tr>
<tr>
<td>Midwest-Gear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachi America Inc.</td>
<td>715 PUSVILLE ROAD GREENWOOD, IN 46183</td>
<td>Phone: (317) 535-5527 Fax: (317) 535-3859 www.nachiamerica.com</td>
<td></td>
</tr>
<tr>
<td>Nordex, Inc.</td>
<td>420 FEDERAL ROAD BROOKFIELD CT 06804</td>
<td>Phone: 203-775-4877 Fax: 203-775-6552 sales@nordex.com www.nordex.com</td>
<td></td>
</tr>
<tr>
<td>Oehlheld U.S., Inc.</td>
<td>1780 BARTAVIA DR. #1 ELGIN, IL 60124</td>
<td>Phone: +1-847-531-8501 Fax: +1-847-531-8511 hutec-us@oehlheld.com www.oehlheld.com</td>
<td></td>
</tr>
<tr>
<td>Riverside Spline and Gear</td>
<td>1380 SOUTH PARKER P.O. BOX 340 MARINE CITY, MI 48039</td>
<td>Phone: (810) 765-8302 www.splineandgear.com</td>
<td></td>
</tr>
<tr>
<td>Southern Gear & Machine</td>
<td>3905 N S 108 STREET MIAMI, FL 33147</td>
<td>Phone: (305) 691-6300 www.southerngear.net</td>
<td></td>
</tr>
</tbody>
</table>

Slater Tools Inc.
www.slatertools.com

Slone Gear International, Inc.
www.slonegear.com

Speedgrip Chuck
www.speedgrip.com

Stace-Allen Chucks, Inc.
www.stace-allen.com

Star SU LLC
5200 PRAIRIE STONE PARKWAY, SUITE 100 HOFFMAN ESTATES, IL 60192 Phone: (847) 649-1460 Fax: (847) 649-0112 sales@star-su.com www.star-su.com

Steelmans Broaches Pvt. Ltd.
www.steelmans.com

Stotz Gaging Co.
www.stotz-usa.com

Toolink Engineering
www.toolink-eng.com

Toolmex Corporation - Lathe group
www.toolmexlathes.com

V W Broaching Service, Inc.
www.vwbroaching.com
The Influence of a Grinding Notch on the Gear Bending Strength Rating

Ulrich Kissling and Ioannis Zotos

Introduction

To achieve the requested quality, most gears today are ground. The usual grinding process includes treating the gear flank but disengaging before reaching the root rounding area. If the gear is pre-manufactured with a tool without protuberance, then at the position where the grinding tool retracts from the flank a grinding notch in the tooth root area is produced. Such a notch may increase the bending stresses in the root area, thus reducing the strength rating.

The AGMA 2001 standard does not address this topic, but in ISO 6336-3, a rule to consider the stress increase due to a grinding notch is documented. The formulas presented are based on research done by Wirth in the 1970s. A recent discussion in the ISO Workgroup responsible for the development of this standard showed that a review of the formulas is necessary as it is presently, the method can be interpreted in two ways.

Modern FEM (finite element method) tools are well-adapted to calculate the stress in the root area, so it is possible to perform an FEM-based parametric study to compare the grinding notch effect as calculated by FEM with the formulas of the standard. Additionally, in Wirth's work some factors are given that are currently not considered in the standard; this is an additional topic of this investigation.

To make such a study possible, an option for an external FEM software was introduced in a calculation software for strength analysis (ISO 6336). The necessary data, such as the exact tooth form and the load at the highest point of single tooth contact, is transferred to the preprocessor, which automatically generates the mesh and calls the solver and the post-processor. The main results are the stress at the 30° (60° for internal gears) tangent point and the maximum stress found in the overall root area. The maximum stress is typically located at the position of the grinding notch.

For helical gears, according to the procedure given in ISO 6336-3, the tooth form of the equivalent spur gear is generated and used for the analysis. An additional topic of interest is the following: if a 3-D FEM analysis is useful for helical gears, how well will the results of the FEM correspond to the equivalent spur gear model used by ISO 6336? This is currently under investigation and will be published later.

In the parameter study for different gear geometries, the grinding allowance, the tip radius of the grinding wheel, the grinding process (generating and form grinding), and the grinding depth were varied. The results provide a good overview of the accuracy of the outcome of the two interpretation variants of the ISO method for the influence of the grinding notch — compared to FEM results. Based on the study, the best variant can be demonstrated. The formula used to obtain the grinding notch depth used in the ISO method is deduced and will be presented. The position of the notch on the tooth has an important influence, which can now be much better considered.

To get a high-torque capacity for today’s gears in car transmissions, industrial gearboxes, or wind turbines, case-carburized steel materials are used. Such gears are pre-manufactured, then case-carburized and surface-hardened. The hardening process generates relatively large distortions of the gears due to the high temperatures during treatment. A gear having quality 7 (AGMA 2015) (Ref. 2) before treatment will typically rise to quality 9 afterwards. To realize a good contact pattern (for high-torque capacity) and low noise behavior, such gears must be reshaped by grinding (or a similar process).

Research on the Grinding Notch Effect

The effect of a grinding notch on the tooth bending load capacity was researched by Wirth (Ref. 1) at the FZG in Munich in the 1970s. Wirth made many measurements on gears with and without grinding notches and deduced S/N-curves. He tested gears with module 3 mm on a test bench, and other gears with module 8 mm were measured on a pulsator. Wirth deduced the stress in the tooth root with the photo-elastic method. Today, the preferred tool to analyze tooth root stress theoretically would be the FEM method. But in the 1970s this method was not yet fully accepted, so Wirth used the photo-elastic method to investigate the stress. While the method can be

Symbols used in this paper:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{gs}</td>
<td>Stress correction factor for gears with grinding notch (ISO 6336)</td>
<td></td>
</tr>
<tr>
<td>Y_{g}</td>
<td>Stress correction factor for gears without grinding notch (ISO 6336)</td>
<td></td>
</tr>
<tr>
<td>h_{grind*}</td>
<td>Grinding notch depth</td>
<td>mm</td>
</tr>
<tr>
<td>r_{grind*}</td>
<td>Grinding notch radius</td>
<td>mm</td>
</tr>
<tr>
<td>h_{grind*}</td>
<td>Height of grinding tool</td>
<td>(in module)</td>
</tr>
<tr>
<td>r_{grind*}</td>
<td>Tip radius of grinding tool</td>
<td>(in module)</td>
</tr>
<tr>
<td>q</td>
<td>Grinding allowance</td>
<td>mm</td>
</tr>
<tr>
<td>σ_{g}</td>
<td>Nominal tooth root stress (without load factors K_p, K_f etc.)</td>
<td></td>
</tr>
<tr>
<td>z, b, m</td>
<td>All symbols according ISO21771 (Ref. 13)</td>
<td></td>
</tr>
</tbody>
</table>
used to indicate the position of the highest stress, the results obtained with this method are limited.

Wirth’s test gears were ground on Maag grinding machines; the Maag dry grinding process was popular at that time but is clearly outdated today. The pre-manufacturing tools used are well-defined, but the shape obtained by the grinding process was documented by contrast pictures only, so the shape, position, and radius of the grinding notch on the different test gears can only be roughly estimated. A profile measurement documentation from an involute measuring machine is not available.

We tried to recalculate Wirth’s test gears, but, as the exact tooth form after the grinding process is not defined as precisely as needed, this is unfortunately not possible. Therefore, it is not possible today to recalculate the test gears with an FEM analysis. So, Wirth’s impressive research work is of little use today if we try to reproduce his findings with modern calculation methods.

Consideration of the Grinding Notch Effect in ISO 6336-3

In the German DIN 3990-3 (Ref. 3) standard, a rule is included for the consideration of the stress increase due to a grinding notch; the same rule was later included in ISO 6336-3 (Ref. 4). Per the references, the method is based on a work performed by Puchner/Kamenski (Ref. 5), published some years earlier then Wirth’s work. Puchner investigated the effect of a notch situated in the center of a bigger notch in general — not on gears. So basically, his results can be applied to the grinding notch case only if the normal to the 30° tangent point in the root rounding and normal to the 30° tangent point of the grinding notch coincide. Wirth (Ref. 1, pp. 6–7) documents the formulas as used 1975 in a working document for the ISO 6336-3 standard. But the formulas that were published in the first official ISO 6336 edition in 1996 are quite different from the equations as documented by Wirth. As a result, some changes were made later, based on the findings of Wirth and others.

The description of the grinding notch effect in ISO 6336-3 is not easily understood, unfortunately, and can be interpreted in various ways. With a grinding notch the stress concentration factor must be substituted by Y_{SG} according to Equation 1. The sketch (Fig. 1a) in ISO 6336-3 (Ref. 4) shows the two important parameters used in the grinding notch formula: 1) the maximum depth of grinding notch (t_g); and 2) the radius of grinding notch (ρ_g). The depth t_g is indicated as the distance between the 30° tangent at the pre-manufactured tooth form and the 30° tangent at the grinding notch.

$$Y_{SG} = \frac{1.3 Y_S}{1.3 - 0.6 \sqrt{\frac{t_g}{Y_S}}} \tag{1}$$

There is no indication on how to calculate t_g and ρ_g in the standard. For a generating grinding process, the radius ρ_g can be calculated, as described in chapter 6 of ISO 6336-3, just using the tooth reference profile deduced from the grinding tool (using $h_{tp} = h_{tp^*}$ — height of the grinding tool; $\rho_{tp} = \rho_{tp^*}$ — tip radius of the grinding tool). The position of the point where the 30° tangent contacts the tooth (at the critical section) can be deduced with the tooth root chord s_{tr}, the bending moment arm h_{tr}, and the load direction angle α_{fr}. These points must first be calculated for the pre-manufactured tooth and the grinding notch, then the distance between the 30° tangents through these points is the grinding notch depth t_g

In a recent meeting of the ISO working group TC60/WG6, the calculation of the grinding notch effect was discussed. It became evident that two different interpretations were possible. Experts (Interpretation I) from the German gear industry claimed that t_g and ρ_g must be taken from the printout of the profile measuring machine. In that case, t_g will always approximately correspond to the grinding allowance, and the radius ρ_g measured on the profile diagram, will be inaccurate because it is slightly changed due to the transformation in the profile measuring machine. The position of the grinding notch, whether higher up on the tooth or not, will then not be considered.

Other experts (Interpretation II) claim that the pre-manufactured tooth and the grinding notch form should be calculated, using t_g as the distance between the tangents described above. The well-known software STplus (Ref. 6), developed by FZG in Munich, and the software KISSsoft (Ref. 7) are using this method. The approach considers the position of the grinding notch, i.e. — the bigger the distance between notch (higher up) and gear root area, the smaller is t_g; therefore, the smaller the grinding notch factor becomes.

Both interpretations will yield the same result if the grinding notch is very deep in the root area, in the center of the root rounding (Fig. 1b, dotted line). But standard practice in grinding is to NOT do that; normally, only the active range of the tooth flank is ground. The grinder will emerge out of the flank shortly after the active root diameter (d_{hr}) is reached (Fig. 1b, dashed line). Figure 1b (dashed line) shows a normal case of a gear having a tip clearance of $0.25*m_n$ to the meshing gear. The position of the usual grind notch is at a distance from the root rounding area. It is evident that...
Interpretation I is on the safe side, but probably for most practical cases it is too conservative.

It is evident that the history of the development of Equation 1 as the interpretation of \(t_g \) in Figure 1 is not so clear. We therefore decided to calculate some typical gearsets — using Interpretation I and Interpretation II — and to also compare the results with an FEM approach.

Root Stress Calculation by 2-D Finite Element Method

To minimize the risk of errors by handling a big number of gear calculations in a calculation software according to ISO 6336 and in parallel with an FEM software, we decided to integrate directly an FEM calculation into the KISSsoft (Ref. 7) software, i.e. — a gearset is calculated according to ISO 6336, after which the tooth form is generated and then transmitted to an external FEM program. The FEM program selected is code aster, which has a wide user base and can be controlled through scripts (Ref. 10). For the same reasons, the program Salome (Ref. 11) was selected for the pre-processing (geometry handling and FE mesh generation).

The accuracy in the generated tooth profile is of great importance for the accurate calculation of stresses in gears, since even the smallest inaccuracies can lead to virtual stress concentration areas — thus influencing the results. For that reason we were based on the advanced tooth form calculation capabilities of KISSsoft (Ref. 7). Figure 2 presents the difference in the generated tooth form when using polygon lines vs. cubic splines to export the tooth form.

In the case of polygon lines, the highlighted areas result in stress peaks that do not represent real stresses (Fig. 2, right); hence it was decided to proceed using cubic splines for the tooth form export.

Regarding the analysis type used, it was decided to proceed in a first step with the 2-D plane stress assumption. That way, the computational time is shorter and more cases can be computed in a shorter time. Beyond that, 2-D plane stress is a common assumption for gear tooth stress analysis (Ref. 12); the smaller the gear face width, the closer to reality is this approximation.

For the FE mesh generation process, an automatic meshing procedure was selected based on the NETGEN algorithm. Since there was a need for the mesh generation to work flawlessly for many different cases, it was decided to prefer second-order triangular over quadrangle elements, since it is known that the latter option could result in highly distorted elements in case of abrupt geometry changes (as, for example, in the grinding notch area). The minimum and maximum element sizes were selected based on the normal module of the gear analyzed, whereas a mesh refinement was performed in the stress concentration areas. In order to reduce the size of the generated mesh, only a segment of three teeth of the complete gear is analyzed. That way we manage to reduce the calculation time without losing the information of the area surrounding the root of the loaded tooth. By choice of the user, the gear is clamped either in the inner diameter or at the sides of the segment analyzed (Fig. 3). Also, the mesh density can be selected by the user, i.e. — with ‘very high density’ about 24 nodes are generated in the root rounding area; the total number of elements is 4,000; other choices are ‘high density’ (17 nodes, 2,200 elements) and ‘medium density’ (10 nodes, 1,300 elements).

After the mesh generation is completed, specific nodes are moved to the exact location where results are to be extracted, such as at the 30° tangent point. Since in stress concentration areas (like the grinding notch), there is a high gradient in stresses and the exact location of the extracted result plays an important role (Fig. 4). The mesh refinement at the stress concentration, together with the selection of triangular elements and the performed mesh quality checks, guarantee that this node movement does not affect the accuracy of...
the resulting mesh.

Spur gears. Spur gears are ideal for a 2-D FEM analysis, because the load distribution over the face width is not a topic of this investigation. As in ISO 6336 (Ref. 4), the line load \(F_n/b \) \((F_n/b = F_n/cos(\alpha_n)/b)\) is applied at the outer point of single tooth contact (HPSTC). The load application angle \(\alpha_n\) according to ISO is used. AGMA 908 (Ref. 8) allows, for spur gears, the choice between load application at tip or at HPSTC. For this investigation only the more accurate method with load application at HPSTC is used. The load angle \(\phi_{st}\) of AGMA is identical with \(\alpha_n\) of ISO, so the applied load is also \(F_n/b\).

Helical gears. For helical gears, both standards — ISO and AGMA — are converting the helical geometry into a virtual spur gear. The virtual gear is a spur gear having the same tooth form (tooth height and tooth thickness) as the helical tooth in the normal section. Then, to get the stresses, the same formulas are used as for native spur gears.

Therefore, for the FEM analysis we transform the gear geometry into the virtual spur gear (as given by the rules in ISO or AGMA). The tooth form of the virtual gear is then generated and transferred to the FEM procedure. The load, load position at HPSTC, and load angle in the FEM model are transferred, as described for the spur gears.

Calculating the bending stress in the root area, using the virtual spur gears for helical gears, is a certain simplification. That is why both the ISO and AGMA standards use an additional factor to compensate for the difference in stress obtained on the virtual spur gear and the effective stress in a helical gear. In ISO, the stress obtained on the virtual gear is multiplied with helix angle factor \(Y_p\). In AGMA, the stress is multiplied by \(1/(C_q’K_q)^*\) \((C_q’:\) helical overlap ratio, \(K_q’\) helix angle factor (Ref. 8)). Therefore, the stresses obtained by FEM in the documentation are multiplied with these factors to provide values that can be compared to the stresses, as given by ISO or AGMA.

It is clearly interesting to compare stresses obtained by the standard for helical gears with a 3-D/FEM analysis. That is why we decided to have an option in the software to generate data for a 3-D analysis, which is discussed further on.

Comparing Gear Stress According to ISO 6336 and AGMA 2101 with 2-D/FEM Results (on Gears without Grinding Notch)

The aim of this investigation is the evaluation of the grinding notch effect. Before performing this task we wanted to test the FEM method used with ‘normal’ tooth forms and compare the results with ISO 6336 and AGMA 2001. For a good test, we wanted to check a wide range of examples, but this is difficult as FEM calculations are time-consuming.

We therefore decided to integrate the entire calculation procedure in an Excel calculation in order to automatically calculate multiple variants and to control interesting inputs and outputs. This is possible using the COM interface of KISSsoft (Ref. 7). The Excel application permits us to load a gear pair example and then execute through dll-calls an ISO 6336, an AGMA 2001, and finally — a call of the tooth form calculator with appended FEM calculation.

Gear parameters can be changed automatically, step by step; the calculations can be performed and the results can be stored and displayed in an Excel graphic. We selected several basic gearsets (Table 1) and varied, with the Excel application, the tooth number of the gear (from 16 to 200 teeth) in six steps. Thus we obtained results from multiple gearsets and could verify the best possible FEM method.

In the graphics, the following results are displayed on the Y-axis:

- **From FEM:** the maximum stress on the gear found in the root area, the stress at the 30° tangent point according ISO 6336, and the stress at the Lewis parabola point according AGMA 908.
- **From ISO 6336:** The nominal tooth root stress \(\sigma_{f0}\).
- **From AGMA 2001:** The nominal bending stress number \(\sigma_{f0}\) (equal to \(\sigma_{f0}\) if all K-factors are in unity).

On the X-axis, the tooth number of the gear is displayed. The results displayed in Figure 5a–5f...
Figure 5 Bending stress σ_F results with module 2 mm gearsets.

5a: Set 1a, m_n 2 mm, x_2 -0.3, ρ_{I2}^* 0.38

5b: Set 1b, m_n 2 mm, x_2 0.0, ρ_{I2}^* 0.38

5c: Set 1c, m_n 2 mm, x_2 +0.3, ρ_{I2}^* 0.38

5d: Set 1d, m_n 2 mm, x_2 -0.3, ρ_{I2}^* 0.10

5e: Set 1e, m_n 2 mm, x_2 0.0, ρ_{I2}^* 0.10

5f: Set 1f, m_n 2 mm, x_2 +0.3, ρ_{I2}^* 0.10
and Figure 6a–6b are interesting. For example, the curve shapes over the gear tooth number for the maximum FEM stress and for the ISO stress are very similar. ISO stresses are always higher than the FEM results—between 5% to 15%, depending on the case. Therefore ISO values are on the safe side, which is reasonable for a simplified analytical method. In some cases the maximum FEM stress and the FEM stress found at the 30° tangent point are identical, which means that the highest stress found by FEM is located exactly at the 30° tangent point.

AGMA stresses compared to FEM results also show a relatively similar curve shape. But often, AGMA stresses are lower than the FEM results. We found AGMA stresses below FEM stresses specifically for:
- Higher profile shift, x
- Smaller root radius of the reference profile ρ_{FP}
- Higher tooth number of the gear

AGMA results are probably too optimistic in these cases. And as the FEM stresses found at the Lewis parabola point (according AGMA) in most cases are a bit smaller than the stresses found at the 30° tangent point (according ISO), it seems that the 30° tangent is a better approach for the location of the section with highest stress. It must be noted that AGMA 908, with ‘tip loading’ instead of ‘load at HPSTC’, gives much higher stresses; so ‘tip loading’ is on the safe side, but not ‘load at HPSTC’.

It must be noted that we did not directly compare the FEM results with measured data on the tested gears because we know that ISO 6336-3 rules were tested with measurements (Ref. 12). So, we compared with analytical results obtained by ISO rules; this allowed us to
Figure 7 Bending stress results with grinding notch position at different diameters.

7a: Set 3a, Generation grinding, \(\rho_{\text{grind}}^{*} 0.10 \)

7b: Set 3b, Generation grinding, \(\rho_{\text{grind}}^{*} 0.02 \)

7c: Set 3c, Form grinding, \(\rho_{\text{grind}}^{*} 0.20 \)

7d: Set 3d, Form grinding, \(\rho_{\text{grind}}^{*} 0.10 \)

Start of Grinding notch position:
- \(d = 142.4 \): Centered in the root rounding
- \(d = 142.7 \): Below \(d_{FR} \)
- \(d = 143.0 \): At \(d_{FR} \)
- \(d = 143.4 \): At \(d_{HF} \)
- \(d = 144.1 \): Too high up in the active area

7e: Set 3e, Generation grinding, \(\rho_{\text{grind}}^{*} 0.10 \), \(t_{u} 0.32 \) mm

Figure 7 Bending stress results with grinding notch position at different diameters.
check a much higher number of examples. Overall, the tests confirmed that the FEM method is well-adapted to check and compare with stresses according ISO. Therefore, this method can be used for the grinding notch analysis.

Root Stress Calculation by 3-D Finite Element Method

It is very interesting to compare the results from the root stress calculation using a 3-D FEM approach with the results from the bending stresses calculation using the ISO and AGMA standards for helical gears. But the grinding notch effect as explained in ISO 6336 is based on the equivalent spur gear, so 2-D FEM is best-fitted for this research. In this study the 3-D FEM results will not be used; they will be given in further publications.

Grinding Notch Effect Calculation by 2-D Finite Element Method

The application of the 2-D/FEM calculation, as previously discussed, provides good results and therefore will be used to investigate the grinding notch effect, as grinding notches, especially when form grinding is used, can be quite sharp. Therefore, all calculations were made with very high grid density.

To check the grinding notch effect, we calculated the same gearset (Table 2) with different grinding tool tip height (h_{grind}). So, the position of the grinding notch is varied, starting from a position near the root diameter (in the center of the root rounding), going higher up to the normally used positions (near the active root diameter), to a last point in the active flank range (which, in practice, should be avoided) (Fig. 8).

Generation grinding with two different grinding tip radii and form grinding with two different grinding tip radii is checked, including different grinding allowances (Table 2).

Different gearsets were analyzed, and an extract of the results is displayed (Fig. 7); the most important parameters to check are:

- The height of the grinding tool, h_{grind}
- The tip radius of the grinding tool, $ρ_{grind}$
- The grinding allowance, q

The radius of the grinding tool is producing the grinding notch radius $ρ_g$, which will be very different if generating grinding or form grinding is used. A grinding tool radius $ρ_{grind} = 0$ will still produce a notch radius of (approximately) $ρ_g = 0.17*mn$ in a generating grinding process, but will produce a sharp edge when form grinding is used. The latter is bad practice and should be avoided. We checked generating grinding with tip radius on the tool $ρ_{grind}^* = 0.1$ and 0.02; form grinding with $ρ_{grind}^* = 0.2$ and 0.1.

The grinding allowance q used in most cases of the study is a standard value according DIN 3972 III, which is often applied in gear manufacturing. If the grinding is increased, then the notch radius $ρ_g$ is unchanged, but the notch depth t_g is bigger, therefore increasing the notch effect. As displayed in Figure 7a and 7e, the stresses are higher in 7e with twice the grinding allowance q.

All the diagrams in Figure 7 show the maximum bending stress $σ_F0$ in the root area, calculated with FEM and with the analytical method according ISO6336-3 for Interpretation I and Interpretation II, as discussed earlier. The FEM stresses in all gearsets are highest when the grinding notch is in the lowest position in the center of the root rounding (Fig. 8, right). The higher up the position of the notch,
the lower are the stresses. From a certain position on, the stresses are constant. Constant stress behavior indicates that the location of the maximum stress is no longer in the grinding notch — but in the root rounding area.

The analytical calculated stresses according ISO, using Interpretation I (constant \(t_g \)), demonstrate a very different behavior. The highest value is at the same position as the FEM stress, but with higher position of the notch, the stress first decreases a bit, but then remains constant and even starts to increase slightly (due to the fact that the grinding notch produced by generating grinding is decreasing with higher position of the tool).

The stresses according to ISO, using Interpretation II (\(t_g \) used, as indicated in Figure 8, left) is identical to the stress according to Interpretation I in the lowest notch position, but then it decreases significantly to become constant at a higher notch position — or very similar to the FEM results. We found similar behavior between FEM and Interpretation II in all gearsets we checked.

Also important to note is that, with few exceptions, the FEM stress is always lower than the Interpretation II stress, meaning that the ISO approach is on the safe side; the exceptions found are all cases where the notch is in a low position. As already mentioned, gears are normally not ground so deeply into the tooth rounding area.

The conclusion is that the use of Equation 1 for \(Y_{fg} \) according to Interpretation II, yields realistic results; whereas, Interpretation I is greatly overestimating the notch effect when the notch is in a position just beyond the active flank area (the most-often-used procedure in manufacturing).

Conclusion

Depending on the pre-manufacturing process, often a so-called ‘grinding notch’ is created during grinding at the position where the grinding tool retracts from the flank. The maximum bending stress, which is normally in the tooth root rounding area, is increased due to a grinding notch. ISO 6336-3 disposes a method that considers the grinding notch effect. The application of this method is analyzed in this paper.

The investigation is made with an FEM tool, which is directly and automatically combined with a verification according to ISO 6336. Therefore, many different gearsets could be analyzed, comparing the maximum stress obtained in the FEM analysis with the stress calculated according ISO 6336. To validate the method, first a set of gears without a grinding notch were calculated; FEM, ISO 6336, and AGMA 2101 results are compared. The outcome is very satisfactory in that good agreement between FEM and ISO results was obtained. It is therefore evident that the method can also be used for the investigation of the grinding notch effect.

The grinding notch depth \(t_g \) used in the grinding notch formula in ISO 6336 can be interpreted in two ways. Interpretation I basically does not consider the position of the notch (in the tooth height direction), whereas Interpretation II considers the effective notch depth in dependency of the notch position. Many gearsets with different position of the grinding notch (generated by a different tip height of the grinding tool), different grinding tool tip radius, form and generating grinding processes, and different grinding allowance are analyzed. The FEM results confirmed that the stress increase through a grinding notch significantly depends on the notch position. The results according Interpretation II show good consistency with the FEM results. In contrast, Interpretation I results are overly conservative, partially showing even contradictory (unrealistic) stress values.

As the method to calculate the grinding notch depth \(t_g \) and the grinding notch radius \(\rho_c \) is not documented in ISO 6336-3, the formulas to obtain these values are explained.

Annex A: Formulas Used to Calculate the Grinding Notch Factor \(Y_{fg} \)

In ISO 6336-3, only the equation for \(Y_{fg} \) is documented, but there is no indication of how to get the notch depth \(t_g \) and radius \(\rho_c \). For an outer gear, the notch geometry data can be obtained as follows: All symbols are according to the definitions in ISO 6336-3 (Ref.4).

All data needed for the form factor \(Y_f \) (see previous Root Stress Calculation by 3-D Finite Element Method) (Ref. 4) must be calculated twice — first for the pre-machining tool, and then for the grinding process.
Grinding tool data (generation grinding). For a generating grinding process, a second calculation of Y_g with the basic rack profile corresponding to the grinding tool data (Fig. 10) — using the final manufacturing profile shift x_{gP}, h_{grind} for h_{P} and ρ_{grind} for ρ_{P} — must be made to get s_n, F_g, θ_g, G_g, ρ_{Pvg}, ρ_{Pfg} according to ISO 6336-3.

Point P3 (x_3, y_3):

$$
y_3 = y_{a3} + \frac{d}{2} \left(1 - \frac{1}{(\cos \beta_g)} \right)
$$

Point P2 (x_2, y_2):

$$
y_2 = y_{a2} + \frac{d}{2} \left(1 - \frac{1}{(\cos \beta_g)} \right)
$$

Then the grinding notch geometry is obtained with:

$$
l_f = P_P \cdot \cos(\gamma) - P_r \quad \text{and} \quad P_r = P_{fg}
$$

Grinding notch data.

With $\varepsilon = \arctan \left(\frac{y_2 - y_3}{x_2 - x_3} \right)$

we get angle $P_1 - P_2 - P_3 \quad \gamma = \frac{\pi}{6} - \varepsilon$

$$
P_{P1} = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}
$$

Pre-machining tool data. A first calculation of Y_g with the basic rack profile data of the pre-machined gear — using the pre-machining manufacturing profile shift $x_{pre} — must be made to get s_{adg}, α, G, ρ_{Ppg}, ρ_{P}, according to ISO 6336-3.

Point P1 (x_1, y_1):

$$
y_{a1} = \frac{m_r}{2} \left(x_1 \cos \left(\frac{\pi}{3} - \theta \right) + \left(\frac{G}{\cos \theta} - \frac{\rho_{Ppg}}{m_r} \right) \right)
$$

Point P2 (x_2, y_2):

$$
y_2 = y_{a2} + \frac{d}{2} \left(1 - \frac{1}{(\cos \beta_g)} \right)
$$

Point P3 (x_3, y_3):

$$
y_3 = y_{a3} + \frac{d}{2} \left(1 - \frac{1}{(\cos \beta_g)} \right)
$$

For more information.

Questions or comments regarding this paper?
Please contact Dr. Ulrich Kissling; ulrich.kissling@kisssoft.ch.
PentacMono-RT: High-Performance Face Milling Cutter Heads

Dr. Hermann J. Stadtfeld

Past and Present Cutter Systems

Bevel and hypoid gears can be cut in a single indexing process (face milling) or in a continuous indexing process (face hobbing); both use cutter heads with a certain number of slot groups (equal blade groups) (Fig. 1). Each blade group consists of one to three blades assembled in the respective cutter head slots. In the case of three-blades-per-blade group, a rougher or bottom blade in each blade group roughs the convex and concave flank surfaces, as well as the root fillets and bottoms of a bevel gear. The second blade of each blade group is commonly an outside blade that finish-cuts the concave flank surfaces and the concave side root fillets. The third blade in each blade group is commonly an inside blade that finish-cuts the convex flank surfaces and the convex side root fillets.

A more common arrangement is the cutter head in Figure 1 with two-slots-per-blade group. The first blade of each blade group is an outside blade. The outside blades are tasked with roughing and finishing the concave flanks and the concave side of the root fillets, including a part of the root bottom of all slots on a bevel gear. The second blade of each blade group is an inside blade. The inside blades rough and finish the convex flanks and the convex side of the root fillets, including a part of the root bottom of all slots on a bevel gear. Figure 2 shows the chip removal arrangement where the outside blade removes a chip on the concave flank with a sharp side of the blade; the dull side of the blade has no cutting contact. The following inside blade removes a chip on the convex flank with the sharp side of the blade; here also the dull side of the blade has no cutting contact.

Another possibility is a cutter head with a single-blade-per-blade group. In such an arrangement the single-blade-type (full profile blade) will perform the roughing and finishing of the concave flanks, the concave root fillets, the root bottoms, the convex root fillets and the
convex flanks of a bevel gear.

The single-blade-type cutter heads with full profile blades are only applied to face milled bevel gears that are cut in a completing process; this is because completing bevel gears show a parallel tooth slot width along the root bottom between toe and heel. The schematically shown cutting process in Figure 3, which only uses one blade type in order to manufacture both flanks of each gear slot, including the slot bottoms, has a number of disadvantages. The blade front face that connects both cutting edges (and in general is a plane surface) can only provide side rake angles of about zero degree for both cutting edges. With a side rake angle of zero degree (front face perpendicular to relative cutting velocity) the chip removal process must conduct more plasticization work in order to remove chips (rather than shearing the chips off with a sharp cutting edge that requires a positive side rake angle). Due to the cutting action around the entire blade profile, the chips from the two flanks are often a connected single chip (Fig. 3). Both zero side rake angle as well as connected chips lead to higher cutting forces and higher part temperature during the cutting and subsequently leads to lower part quality. Another disadvantage is that the connected outside-inside chips require a large space and are therefore not easily flowing away from the cutting area. Large, bulky chips are more likely to pack between consecutive blades, unlike smaller rolled chips like those produced with the outside-inside blade cutting system in Figure 2 that has a two-blades blade group.

The blade in Figure 4 used in the “single-blade-per-blade-group cutter head” comprises an outside cutting edge with an edge radius, an inside cutting edge with an inside edge radius, and a top width that spaces the two cutting edges in order to cut the correct slot width.

Obstacles Resulting from Full Profile Chip Formation

The bulky and large chips (Fig. 3) require a wide space between two preceding blades. In modern, high-productive cutter heads, the space between blades is limited, which causes chip flow problems. Particularly in front of the outside blades, chip flow is constrained because
the space is narrowing towards the outside of the cutter head. If the first chip is “caught” between two blades, then in the next revolution a new chip is developed in the same slot. Particularly when cutting Formate ring gears, the already-present chip and the newly cut chip cannot escape the gap between the blades because this gap is closed on both sides by the convex and the concave flank. Additional space is not available, which leads to a compression of both chips in order for both to fit in the given space. Each additional chip reduces the likelihood that the chips can leave the gap between the blades. Already the third and fourth chips can cause a situation like that shown in Figure 5.

Slight chip packing results in increased part temperature and reduced surface finish quality. If chip packing reaches the point shown in Figure 5, it will lead to a fatal end of the production because blades will break and the workholding — or even the machine — can be damaged.

Reducing the feed or roll rates, or eliminating every other blade from the cutter head will, in most cases, solve the tool failure. However, it will in turn reduce productivity and therefore increase the cost-per-manufactured-part.

Part temperature in a high-speed, dry cutting process might be viewed as a problem, although certain compensations or corrections are available to reduce, for example, temperature growth-inflicted flank geometry deviations.

The process parameters in PowerCutting are chosen and optimized in order to remove the largest amount of process heat with the chips away from the part, the cutting tool, and from the machine components. Because of this, the temperature increase of the manufactured parts reaches a quasi-steady-state level after cutting of 5 to 10 parts. It is called a quasi-steady-state because after reaching this point, there first will be a very slow but steady increase of the part temperature that can be recognized after every 10 to 20 parts. Towards the end of the tool life a more rapid temperature increase can be noted which, along with other criteria, is a sign of the point where the cutter head should be exchanged.

Figure 6 indicates the differences of the average part temperature of a representative automotive-size Formate ring gear. Along with the increase of part temperature in the case of increasing cutting surface speed, the graphic in Figure 6 also reflects that the two-face blade system using inside and outside blades generates the lowest part temperatures. The reason is the 12° side rake angle that makes the blade appear very sharp, resulting in a high shearing component and a low cold-forming component during chip formation.

The highest average part temperatures are recorded in the case of a cutter head with full profile blades. The amount of “cold forming” or plasticization work that generates heat is higher than for two-face blades because of the zero degree side rake angle and the fact that the bulky chip, which is formed by the entire profile of the blade, is restricted in its flow; the chips cannot roll like the side-chips or L-chips created by the two-face inside and outside blade system. The crumbling of the bulky full profile chip requires additional energy that is converted to heat, as is evident in the recorded part temperature.

The temperature graph for the three-face blade system with inside and outside blades is slightly above the two-face graph. The side rake angles of about 4.5° cause a higher material plasticization work than the 12° two-face blades, but the chip can freely roll as side-chips or L-chips. The amount of plasticization work the three-face blade system performs is a desirable effect because the steel appears softer while it is sheared off and creates a better surface finish compared to the two-face cut parts.

The more significant problem is the growing temperature around the circumference of a pinion or a gear (Fig. 7). The heat that a single-indexing process generates is located in the area of the currently cut slot. If the temperature of a fresh-cut bevel gear should be recorded, it is necessary to choose a certain tooth or slot for the temperature measurement. Immediately after the cutting is finished, the temperature between the first cut slot and the last cut slot might vary more than 80°. The reason is that the highest temperature moves with the cutting zone around the part. The zone of the first cut slot has had the most time to cool down when the cutting reaches the last slot (adjacent to the first slot). The jump in temperature shown in Figure 7 results in a so-called “first-to-last error” in the tooth spacing that is difficult to correct entirely with a spacing compensation. A steady increase of this temperature jump during the cutting of a complete batch of parts can be noted, which would require frequent adjustment of the
spacing compensation parameters. First-to-last spacing errors require a slowed down grinding cycle if the cut parts are ground after heat treatment.

Production measurements showed that a full profile blade system not only causes the highest average part temperature after cutting, but also generates the highest temperature step between the first and last cut slots compared with the inside-blade and outside-blade cutter systems.

Geometrical Aspects of Full Profile Blades

With a cutter system that only uses one kind of cutting blade, rather than three or two different blades arranged in blade groups, the logistical cost of blade blank storage, blade grinding, blade storage after grinding and cutter building is reduced to 50%, compared to an inside-blade and outside-blade cutter system. The cutter head has twice as many cutting edges for cutting the convex and the concave flanks and the same number of cutting edges cutting the root. In cases where cutting edge wear dominates over blade tip wear, the expected tool life of a full profile cutter head would be higher than the tool life of an outside-blade and inside-blade cutter head.

Higher cutting forces due to the restricted chip flow and vibrations induced by the full profile chip forming and crumbling work will adversely affect tool life, which is why the full profile blade system in practical applications does not show the anticipated tool life advantages versus the inside-blade and outside-blade cutter system.

Full profile blades can only be built to height. As shown in Figure 8, if the full profile blade was moved with the goal of re-positioning the outside cutting edge radially, then the inside cutting edge will also move radially by the same amount. This connection between inside-blade and outside-blade would only allow for a compromise in radial cutting edge position.

PentacMono — Design

A PentacMono blade (Fig. 9, center) is manufactured with an outside cutting edge that duplicates the pressure angle and shape of the full profile blade (Fig. 9, left), and has a tip edge radius that is identical to the outside edge radius of the
full profile blade. The blade top width of the PentacMono blade is smaller than the top width of the full profile blade by an amount ΔR. Tip edge radius and cutting edge on the right side of the PentacMono blade are identical to the inside cutting edge of the full profile blade.

If two identical PentacMono blades are placed in a cutter head that has slot bottom radii for two consecutive blade slots that differ by the amount of ΔR (Fig. 9, right), then the slots cut with this cutter have the same width as the slots cut with the full profile cutter head.

The produced gear surface geometry is identical to the geometry produced by the full profile blade. Like the full profile blade, the PentacMono blade arrangement only requires one single type of blade in order to simultaneously cut, in a completing cutter head, the convex and the concave flanks, as well as the root fillets and root bottoms.

Some important performance criteria of the PentacMono blade system are:

- The separation of the inside and outside cutting to two different blades that have the identical specification reduces the variety of different blade geometries to be administrated, handled and refurbished.
- Chip formation is more optimal and the cutting process is smoother.
- The cutting forces are lower than the cutting forces of the full profile blade that also lowers the process temperature.
- Part quality produced with PentacMono blade and cutter system is higher than part quality of the full profile blade system.

In order to realize the PentacMono blade arrangement in a cutter head, the outside blade must be positioned in a cutter head slot with a slot bottom radius which is an amount ΔR larger than the slot bottom radius of the inside blade (Fig. 10). The slot bottom radius is the radius from the cutter head axis to the blade seating surface. The different slot bottom radii in conventional cutter heads with inside and outside blades are commonly stepped. Stepping means that the inside blades have a smaller slot bottom radius than the outside blades. The difference amount between the slot bottom radii of outside and inside blades is 5-to-20 times larger than the amount ΔR required for the PentacMono blade positioning. The mentioned difference in slot bottom radii allows conventional cutter heads to cover a wide spectrum of different bevel gear designs, and also allows cutting gears of a certain module range.

In order to enable the PentacMono cutter system to also cover a wide range of different bevel gear designs and modules, the blade seating surfaces can be modified and plan-parallel spacer blocks can be connected to them. A PentacMono cutter head can be utilized with or without the spacer blocks (left versus right sequence, Fig. 10). Different sizes of the spacer blocks can be prepared in order to achieve large radius span $RW_{o8} + \Delta S$ and $RW_{i8} + \Delta S$ by making a variety of spacer blocks with different thicknesses.
available. In the actual PentacMono cutter head design, the difference ΔR is worked into the thickness of the spacer blocks. This not only allows the manufacture of cutter heads with equal slot bottom radii; it also makes the PentacMono system more flexible; e.g., for different amounts of ΔR—depending on the individual gear design. This is advantageous if a wide module range has to be covered. Different spacer block thicknesses also allow a consolidation of a variety of different gear designs for the usage of the same blade geometry (in case of identical pressure angles but different gear slot widths).

The Mono-blade cutter head system has been realized in cutter heads with pentagon-shaped slot cross-section and stick blades (Fig. 11). The spacer blocks will in this case have the form of a prism, like the two examples shown (Fig. 12). The thickness of the spacer block can be manufactured in order to exactly duplicate the thickness of the rectangular spacer blocks (Fig. 10). The spacer block (Fig. 12, right) is an optimized design resulting from numerous cutting trials. The connection to the bottom of the cutter head slots is realized with only one recessed screw. In order to achieve maximum seating stiffness between the spacer block and the cutter head, surfaces labeled with “seating 1 through 3” are in contact with precision-ground surfaces in the cutter head slot. Three seating surfaces present an over-constrained system, which is why the compliance check was implemented to assure a tight fit between the spacer block and the cutter head body.

The PentacMono cutter head system is designed with radial adjustability. Figure 13 shows the blade seating surfaces that are unmodified in the upper section and have a modification on the lower section. In addition to the clamp screws in the upper location, adjustment screws have been implemented in a lower location of the outer cutter head ring. A clock-wise rotation of the adjustment screw will move the tip of the blade and increase the point radius R; a counter-clockwise rotation of adjustment screw will reduce the point radius R.

Rather than modifying the cutter head seating surfaces with the relief for radial truability, in the production version of PentacMono-RT cutter heads the relief modification is machined onto the seating surfaces of the spacer blocks (Fig. 12, right).

The mono blade and cutter system, as it was described for the single indexing face milling process, can also be utilized in the continuous indexing face hobbing process. In order to achieve identical inside and outside blades the blade timing cannot be controlled with individual front face distances between outside and inside blades. The blade timing—the angular distance between the reference point of the inside blade cutting edge and the reference point of the outside blade cutting edge—influences the slot width and therewith the tooth thickness. If the front face distance and all other parameters of the blade that is placed in an outside slot are equal to the parameters of the inside blade, then the correct tooth thickness in a completing cut can only be established with a change of the radial location of the cutting edges. In order to keep both blades identical, a slot width discrepancy, e.g. $+\Delta s$—can be corrected by increasing the radius of the inside cutting edge by $\Delta s/2$ and a reduction of the outside cutting edge radius by $\Delta s/2$. In this case the correct tooth slot width (and tooth thickness) will be achieved by using identical blades in the cutter head slots for the outside cutting, as well as in the cutter head slots for the inside cutting.

The slot radii of outside and inside cutting slots have to be located in order to achieve, for an average gear cutting, the same radius of the reference point on both the outside and the inside cutting
edge. In order to cover a wider range of gear designs in face hobbing, spacer blocks must be utilized.

PentacMono-RT — the Best of Both Worlds

The newly developed line of PentacMono cutter heads are today available for the face milling process, and in the future will also be available for face hobbing. The side rake angle (Fig. 14) must be zero degrees to fulfill the objective of having identical blades for outside and inside cutting. In order to achieve an optimal chip removing process, a high top rake angle of 4° is proposed that will offset the effect of the neutral side rake angle. A high top rake angle helps to start the forward-moving shear crack that lowers the forces for cold forming and plastici-

zation. All PentacMono-RT cutter heads are designed with a 12° blade slot inclination, like PentacPlus cutters. This allows a variety of freedoms required in order to realize the mandatory zero degree side rake angle as well as the desirable high top rake angle.

The edge treatment of PentacMono blades after blade grinding is identical to the treatment of three-face inside/outside blades. Recommended is edge honing or vapor blasting that removes loose carbide particles along the cutting edges and only leaves a trace of edge rounding; the desirable edge rounding radius is less than 2 micrometers.

A simplified principle graphic for the chip removal process of the two identical Mono blades in one blade group that have a radial offset \(\Delta R \) is shown (Fig. 15). The two preceding blades (Fig. 15) act like a true outside and a true inside blade that forms rolled-up side chips (bottom) and L-shaped chips. The chip flow is identical to the chip flow of regular inside and outside blades. The side rake angle of zero degrees has to be compared to three-face ground inside/outside blades that typically have a side rake angle of 4.5°.

As mentioned above, the effect of the lower side rake angle is partially offset by the top rake angle of 4° versus 1 to 3° in regular inside/outside blades. As a result, the average part temperature of a freshly cut ring gear, for example, is at the same level as the graph for the three-face inside/outside blade cutting system (Fig. 6). Also, the temperature distribution around the circumference immediately after a face milled ring gear is finish cut behaves very similarly to the schematic display shown in Figure 7 — especially in that the critical temperature step between the first and last cut slot is of a similar magnitude as ring gears manufactured with the traditional inside and outside blade cutter system.

Precisely radially trued blades cause less vibration during cutting action and assure that blades have a nearly equal chip load and, as a result, forms smooth cutting flats on the flank surfaces of the generated member. The result of a parameter study is shown (Fig. 16). The roll rate (degree/min) changes in the direction of the ordinate. Surface finish improvement by smoother generating marks, which are closer together, is shown in the direction of the abscissa. The diagram includes the surface roughness marks of 0.05mm that are caused by the blade cutting edges. The roughness marks are independent of the roll rate and show in each of the photos the same value; between the lower and the upper photos the roll rate doubles. For the

Figure 14 Higher blade slot inclination in PentacMono-RT cutter heads.

Figure 15 Simplified display of interaction between two preceding Mono blades.
un-trued cutter this translates into generating marks that nearly double. The radially trued cutter left generating marks are closer together and become nearly invisible with slow roll rates. PentacMono-RT cutter heads benefit from the radial truing feature and show surface characteristics consistent with the right-hand sequence in Figure 16.

PentacMono blades can be used for a second tool life if the blades in the inside slots of the cutter head are exchanged with the blades in the outside slots after the end of the first tool life. Cutting edges and edge radii on the non-cutting side do not wear during the first tool life run, which offers the possibility of a second use of the same blades — without the requirement of re-grinding and re-coating.

Summary

PentacMono-RT cutter heads have to be compared to full profile blade cutters with rectangular blade cross-section. Both systems use only one kind of blade that reduces the number of blade summaries and, therefore, reduces the number of different blades a manufacturer has in storage in half. In spite of the full profile cutter system, the PentacMono-RT blades take side chips. Depending on the slot in which a Mono blade is placed, it becomes an inside blade or an outside blade that makes for a free flow of small-sized L-chips and side chips (Fig. 15); the tendency for chip packing is reduced. If chip packing like that shown in Figure 5 still occurs, then the Pentac specific chip packing elimination by back face grinding can also be applied to the PentacMono-RT system.

Process heat generated by Mono blades is lower than the heat generated by full profile blades. The temperature step between the first cut and the last cut slot is greatly reduced due to good chip flow and the lower chip deformation work, compared to the energy required forming a bulky full profile chip. A temperature step between the first and last cut slot will, after the part has cooled down to room temperature, transform in a large indexing error between the teeth adjacent to those two slots. Even if parts are ground after heat treatment, the indexing error will require slower grinding and, in most practical applications, even calls for a dual rotation in which the first rotation is used as a rough grinding cycle and the second rotation is set up as a finish grinding cycle.

The blade seating uses the prism-formed slot bottom geometry, which establishes a positive form seating between the two prism surfaces and the clamp block surface (Fig. 11).

The prism seating is asymmetric, with the intention to utilize the steeper seating surface to support the blade against the cutting forces. Slightly higher cutting forces of the zero degree side raked blades at the moment of first cutting contact benefit from the stiff connection between blade and cutter head body.

Pentac Mono-RT cutter heads use spacer blocks with the shape of a prism (Fig. 17). The spacers have their own bottom seating in the cutter head slots with their bottom surfaces, which are formed congruent to the prismatic seat of each cutter slot. In order to increase the seating stiffness between spacers and cutter head slot bottoms, an additional surface (seating 3, Fig. 12) is precision-ground and provides in connection with...
Dr. Hermann J. Stadtfeld received in 1978 his B.S. and in 1982 his M.S. in mechanical engineering at the Technical University in Aachen, Germany; upon receiving his Doctorate, he remained as a research scientist at the University's Machine Tool Laboratory. In 1987, he accepted the position of head of engineering and R&D of the Bevel Gear Machine Tool Division of Oerlikon Buehrle AG in Zurich and, in 1992, returned to academia as visiting professor at the Rochester Institute of Technology. Dr. Stadtfeld returned to the commercial workplace in 1994 — joining The Gleason Works — first as director of R&D, and, in 1996, as vice president R&D. During a three-year hiatus (2002–2005) from Gleason, he established a gear research company in Germany while simultaneously accepting a professorship to teach gear technology courses at the University of Ilmenau. Stadtfeld subsequently returned to the Gleason Corporation in 2005, where he currently holds the position of vice president, bevel gear technology and R&D. A prolific author (and frequent contributor to Gear Technology), Dr. Stadtfeld has published more than 200 technical papers and 10 books on bevel gear technology; he also controls more than 50 international patents on gear design, gear process, tools and machinery.

References
FOR UNSURPASSED QUALITY, PERFORMANCE AND VARIETY IN GEAR OILS....

LOOK TO LUBRIPLATE®

GEAR OILS

Lubriplate's complete line of premium-quality gear oils has been formulated to deliver unsurpassed performance in a wide range of gear reducers. They meet and exceed the performance specifications of most gearbox manufacturers and interchange directly with most OEM oils. Available products include...

SYN LUBE SERIES 150 - 1000
- 100% SYNTHETIC PAO-BASED GEAR OILS
- High-performance, 100% synthetic, polyalphaolefin (PAO)-based gear oils.
- Compatible with petroleum-based oils and most seals for easy conversion.
- Available in ISO viscosity grades 150, 220, 320, 460, 680 and 1000.

SYN LUBE HD SERIES
- HEAVY-DUTY, EXTREME PRESSURE (EP)
- 100% SYNTHETIC, PAO-BASED OILS
- Super heavy-duty, polyalphaolefin (PAO)-based synthetic gear lubricants.
- Formulated to meet AGMA EP (Extreme Pressure) requirements.
- For Heavy-duty, high load applications where an EP oil is required.

SPO SERIES
- HIGH-PERFORMANCE, ANTI-WEAR FORTRIFIED,
- PETROLEUM OIL-BASED, INDUSTRIAL GEAR OILS
- Petroleum oil-based anti-wear, rust & oxidation inhibited (R&O) gear oils.
- Can be used with silver alloy, copper, and copper alloy bearings.
- Premium quality, high-performance, petroleum oil-based gear oils.

SFGO ULTRA SERIES
- NSF H1 REGISTERED FOOD GRADE
- 100% SYNTHETIC, PAO-BASED GEAR OILS
- NSF H1 registered and NSF ISO 21469 certified - food machinery grade.
- 100% synthetic, PAO-based fluids for food processing and bottling plants.
- Available in ISO viscosity grades 150, 220, 320, 460, 680 and 1000.
- Fortified with Lubriplate's proprietary anti-wear additive.

PGO & PGO-FGL SERIES
- ADVANCED 100% SYNTHETIC PAG-BASED GEAR OILS
- Ultra High-Performance, Polyalkylene Glycol (PAG)-Based, Gear Lubricants.
- ECO-friendly - Inherently biodegradable, provides long service life, energy conserving.
- PGO-FGL Series is NSF H1 registered and NSF/ISO 21469 certified food grade.

SYNTHETIC WORM GEAR LUBRICANT
- 100% SYNTHETIC, ISO 460 grade, polyalphaolefin (PAO)-based worm gear oil.
- Formulated especially for worm gear applications.
- Provides excellent lubricity and oxidation resistance.

APG SERIES
- HEAVY-DUTY PETROLEUM OIL-BASED
- EXTREME PRESSURE (EP) GEAR OILS
- High-quality, petroleum-oil based, extreme pressure (EP) gear oils.
- Meets military specification MIL-PRF-2105E and MIL-L-2105D.
- Conforms to API categories GL-3, GL-4, GL-5, MT-1.

KLING GEAR OILS
- HEAVY-DUTY, TACKY RED, PETROLEUM OIL-BASED
- EXTREME PRESSURE (EP) GEAR OILS
- Heavy-duty, tacky, red, extreme pressure (EP) petroleum-based gear oils.
- These tacky, adhesive, extreme pressure oils cling tenaciously to gear teeth.
- Formulated for heavy equipment and heavy service industrial applications.
- Meets military specification MIL-PRF-2105E and API classification GL-5.

Newark, NJ 07105 / Toledo, OH 43605 / 800-733-4755
To learn more visit us at www.lubriplate.com

Backed By: Lubriplate®

Complimentary Extra Services Package
- Plant Surveys / Tech Support / Training
- Color Coded Lube Charts & Machine Tags
- Lubrication Software / Follow-Up Oil Analysis
Full Contact Analysis vs. Standard Load Capacity Calculation for Cylindrical Gears

M. Otto, U. Weinberger and K. Stahl

Introduction

Modern gear design is driven by full tooth contact analysis (TCA) to determine adequate gear microgeometry. Engineers strive to optimize load distribution and make use of the full load carrying capacity of the gearset. Local stress levels in the tooth contact and the tooth root are important calculation results, but reliable values for the limits of the load carrying capacity are available for standard methods, e.g. — ISO 6336. Therefore, the relevant power ratio and safety factors are still determined by standard methods that use traditional approaches; combining both provides a possibility for further optimizations.

Tooth root breakage and flank damage by pitting and scuffing have been covered in international standards for some time. Recently, ISO standards have been created that cover additional gear failure modes (micropitting, tooth flank fracture). Again, for these the question of how to combine tooth contact analysis methods with standard calculations must be answered.

In this paper local tooth contact analysis and standard calculation are used to determine the load capacity for the failure modes pitting, tooth root breakage, micropitting, and tooth flank fracture; analogies and differences between both approaches are shown. An example gearset is introduced to show the optimization potential that arises from using a combination of both methods. Difficulties in combining local approaches with standard methods are indicated. The example calculation demonstrates a valid possibility to optimize the gear design by using local tooth contact analysis while satisfying the requirement of documenting the load carrying capacity by standard calculations.

The designer of a competitive gearbox has to pursue the aims of high load carrying capacity, low NVH behavior, and high overall efficiency. In many applications complex geartrains — with multiple meshes per gear and often with planetary stages — are required to reach a compact arrangement of the gears in the gearbox. An obvious conclusion seems to be that a system approach is necessary to consider the mutual influence of the machine elements.

On the other hand, valid standard methods to evaluate the load carrying capacity of gear stages have only limited possibilities to introduce system influences from the whole geartrain.

This inevitably leads to two questions: 1) how valid are the results of proven standard calculations for a progressive gearbox design; 2) and how reliable are results from a non-standard full contact analysis?

This paper is a pledge to keep it simple and use high-fidelity calculation models for only the necessary aspects. Standard methods may be useful in design and documentation, and complex models for optimization in detail. Don't get lost in the complexity already in the design stage!

Full Contact Analysis

A full contact analysis means a calculation model for load and deformation analysis of a geartrain — including gearbox housing and interactions between all elements. Usually, a static deformation analysis of housing, bearings, shafts, gears, teeth, and further elements (planet carrier, differential housing, etc.) is included. Full interaction between all elements and the possibility of a combination with FEM analysis results for...
structural parts (carrier, housing) characterizes the performance of the method. The overall analysis yields the deformations and positions of the shafts, and thereby influences the TCA. Results of the analysis include load distribution over tooth flanks, transmission error of the gear meshes, and load-dependent friction losses (Ref. 7). Therefore a full contact analysis is a tool to design flank microgeometry and balance the load distribution, according to the importance of the main design goals.

The necessity to include all system influences is obvious if a gearbox as shown in Figures 1–3 is considered (Refs. 15–16). The geartrain is built up from three coupled planetary stages according to the design sketch in Figure 2a. All elements positions and deformations under load are mutually dependent. A full contact analysis is the way of choice to determine the deformation state (Fig. 3).

Several slightly different approaches to the task of a full contact analysis are available, mostly in software packages. Vriesen et al. (Ref. 8) document a contact analysis for a wind turbine gearbox with FVA-workbench and optimize the load distribution of the gear meshes by designing an adequate microgeometry.

Bonori et al. (Ref. 4) use a contact analysis for a spur gear mesh with a numerical optimization algorithm to optimize the profile modification; the approach does not cover the interaction of elements of whole gearboxes.

Bihra et al. (Ref. 3) use a contact analysis approach for noise prediction of a gear stage in an automotive gearbox. They show that manufacturing deviations may lead to differences between design behavior and measurement results. The contact analysis reliably covers the measurement results if manufacturing deviations are introduced in the model.

Langlois (Ref. 6) shows how to improve NVH behavior of a gearbox by using MASTA software. He considers load capacity aspects, but the interaction between standards calculation and contact analysis is not the main focus of the approach.

Wirth et al. (Ref. 5) use the FVA-workbench to design and optimize an automatic automotive transmission; designing modifications of gear meshes in the complex system are documented. The results of standard carrying capacity and the designed load distribution are interdependent via a derived load distribution factor.

Although many other articles addressing full contact analysis approaches are available, a combination with proven but traditional standard methods is normally not discussed.

A major deficiency of full contact analysis methods may be the difficulty of determining reliable values for the gear capacity. Material values that exist in standards like ANSI/AGMA 2001 (Ref. 2) or ISO 6336 (Ref. 9) have been derived from experiments using standard equations to evaluate the experimental results, so most full contact analysis methods do not yield fully transparent safety factors or power ratings. Application of a full contact analysis on load carrying capacity for gear design is closely connected to the engineer’s own experience.

Standard Load Capacity Calculation

Standards for gear rating include capacity values for a number of materials that are mostly derived from experiments performed on standard gears. Usually, the testing apparatus provides an even load distribution over tooth width.

System influences are regarded as “external” and covered in factors that have to be specified up front (e.g., “overload” factors K_A, K_{180}, K_{180}). Especially the K_{180} value includes flank deviations that result from the surrounding elements (shafts, bearings, housing, etc.). No interaction between all elements is covered in the standard approach, as these factors are constant input values, therefore they must be determined for every load case up front. One possibility is documented in AGMA 927 (Ref. 1) or in the ISO 6336 (Ref. 9) Appendix, which is mainly based on the AGMA approach.

Definition of the load distribution factor (Eq. 1) is important; it covers a deviation over tooth width and, by this approach, includes all influences from the shaft dislocations under load. It is not derived from a detailed load distribution analysis, since the load distribution in the gear mesh is part of the system of equations used in the standard approaches to determine the representative stress levels.

$$K_{180} = \left(\frac{F}{F_{\text{max}}} \right)_{\text{max}}$$

F_{max} acting load per tooth width

F_{max} maximum of acting load per tooth width

The standard ISO 6336 covers several gear failure modes and provides equations to analyze the load carrying capacity of the gear mesh. The basic concept deals with the transverse involute gear contour; i.e., helical gears are covered by additional empirical factors. The main assumption is that, in general, the maximum stress value determines the gear lifetime. The calculation is usually performed only on one position (e.g., pitch circle for helical gears) or on some positions along the profile (spur gears; all gears for scuffing or micropitting) that...
are deemed to be the positions of maximum occurring stress.

Pitting Resistance

Pitting resistance (ISO 6336-2) is determined by the contact stress (Eq. 2) versus the permissible contact stress.

\[
\sigma_{h1,2} = Z_{BD} \cdot \sigma_{in} \cdot \sqrt{K_{A}\cdot K_{fD} \cdot K_{fla}}
\]
(2)

The relevant value is the minimum occurring stress.

Tooth Root Bending

Tooth root bending safety (ISO 6336-3) is determined by the tooth root stress (Eq. 3) versus the tooth root bending strength.

\[
\sigma_{h1,2} = \sigma_{pr} \cdot K_{A} \cdot K_{fD} \cdot K_{fla}
\]
(3)

The nominal tooth root stress is derived from a beam-bending approach and is extended by empirical values, e.g. — for helical gears. Values for the tooth root bending strength have been evaluated by these formulas from experiments and are documented in the standard.

Micropitting

The safety factor against micropitting is determined according to ISO/TR 15144 (Ref. 10). The relevant value is the minimum occurring stress.

\[
S_{h} = \frac{\lambda_{GFP}}{\lambda_{GFP}} \cdot S_{min}
\]
(4)

The minimum specific lubricant film thickness is determined according to Equation 5 by the arithmetic roughness of the flanks (Eq. 6) and the minimal film thickness in the points Y along the path of contact.

\[
\lambda_{GFP} = \frac{h_{Y}}{R_{s}}
\]
(5)

\[
R_{s} = \frac{R_{s1} + R_{s2}}{2}
\]
(6)

The permissible specific lubricant film thickness must be determined in a standard micropitting test that is evaluated according to the equations of ISO/TR 15144. The standard method does not suggest a minimum value for the safety factor \(S_{h, min}\), although (Ref. 13) suggests a minimum value of 2 for a local approach that provides the basis for the content of ISO/TR 15144.

Tooth Flank Fracture

A standard method to evaluate the risk of tooth flank fracture is discussed, to be issued as ISO DTS 19042.

Extended Method for Load Capacity Calculation

When full contact analysis became more readily available to gear designers, effort was put into developing load carrying capacity methods that rely on the precise results of a contact analysis, but are compatible with the available strength values documented in ISO; a collection of methods is cited below. These are then used to derive some of the results shown in the example section further below. Pitting resistance on a local basis may be calculated according to an approach by Stahl (Ref. 11) (Eq. 7).

\[
\sigma_{1/2} = \sigma_{in} \cdot \sqrt{K_{A} \cdot K_{fD} \cdot K_{fla}}
\]
(7)

Factors \(K_{A}\) and \(K_{fD}\) are defined as in ISO 6336. The local peak contact pressure factor \(K_{fD}^{1/2}\) transfers the resulting pressure distribution across the tooth flank into the equation. The (in respect to ISO 6336) modified nominal contact stress covers further influences. Tooth root bending is covered according to Schinagl (Ref. 12) on a local basis.

\[
\sigma_{1/2} = \sigma_{in} \cdot \sqrt{K_{A} \cdot K_{fD} \cdot K_{fla}}
\]
(8)

Factors \(K_{A}\) and \(K_{fD}\) are defined as in ISO 6336. The local peak contact pressure factor \(K_{fD}^{1/2}\) transfers the resulting pressure distribution across the tooth flank into the equation. The (in respect to ISO 6336) modified nominal contact stress covers further influences. Tooth root bending is covered according to Schinagl (Ref. 12) on a local basis.

\[
\sigma_{1/2} = \sigma_{in} \cdot \sqrt{K_{A} \cdot K_{fD} \cdot K_{fla}}
\]
(8)

Factors \(K_{A}\) and \(K_{fD}\) are defined as in ISO 6336. The local peak contact pressure factor \(K_{fD}^{1/2}\) transfers the resulting pressure distribution across the tooth flank into the equation. The (in respect to ISO 6336) modified nominal contact stress covers further influences. Tooth root bending is covered according to Schinagl (Ref. 12) on a local basis.

\[
\sigma_{1/2} = \sigma_{in} \cdot \sqrt{K_{A} \cdot K_{fD} \cdot K_{fla}}
\]
(8)

Local tooth root stress is introduced by the factor \(K_{fD}^{1/2}\) and the modified nominal tooth root stress into the approach.

Advantages of Combining the Approaches

The full contact analysis is needed to determine adequate microgeometry and to secure even load distribution for design load; standard methods are then employed to determine the load capacity.

In general, a two-stage solution seems feasible: first, conduct a gearbox system full contact analysis to determine the relative position of the gears in respect to each other; then perform the separate detailed TCA of each mesh — considering the results of the first step.

A basic contact model for gear meshes in the first step to evaluate system behavior (not dependent on meshing position) may be used, and a detailed gear model in the second step to analyze each mesh. Considering system influences from the first step as fixed boundary conditions (e.g., introducing a constant shaft deviation in the mesh analysis) would be a possibility.

This leads to two different approaches that may be taken:

1. Performing system analysis and deriving the load factors for standard calculation.
2. Using allowable stress numbers for a load capacity calculation in a contact analysis. This makes deriving capacity limits for the gears by evaluating existing experimental results necessary with the new calculation methods; it is then possible to better evaluate the impact of modifications on capacity.

Typically, standard and local methods should both be used by the designer. Standard methods are useful to assess gear load carrying capacity already in the design stage and to allow valid documentation and reporting for the customer. Gear microgeometry doesn’t have to be documented with all details for a valid standard load carrying capacity calculation; this is an advantage in documentation, since the know-how of the designer is maintained. On the other hand, standard calculations are not the tool of choice to design and optimize gear microgeometry; here, the local methods apply. They allow a much deeper insight.
into the connection between microgeometry and load capacity than the standards, giving the designer elaborate tools to reach optimization goals.

Example Calculation
The following gearset is used as an example:

<table>
<thead>
<tr>
<th>Table 1 Gear main geometry</th>
<th>pinion</th>
<th>gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teeth z</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>Normal module (m_n) mm</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Normal pressure angle (\alpha_n) °</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Helix angle (\beta) °</td>
<td>-12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Profile shift coefficient (x)</td>
<td>-0.2</td>
<td>-0.215</td>
</tr>
<tr>
<td>Center distance (a) mm</td>
<td>202.5</td>
<td></td>
</tr>
<tr>
<td>Transverse contact ratio (\varepsilon_\alpha)</td>
<td>-1.528</td>
<td></td>
</tr>
<tr>
<td>Overlap ratio (\varepsilon_\beta)</td>
<td>-1.083</td>
<td></td>
</tr>
<tr>
<td>Torque moment (T) Nm</td>
<td>1225</td>
<td></td>
</tr>
</tbody>
</table>

The contact analysis yields the following results, which are documented in Figures 4 to 11. All figures are valid for fully modified gear microgeometry. When the results were compared to non-modified gears, the difference were clearly recognizable.

The safety factors according to the ISO calculation (load distribution factor from the contact analysis is considered), and according to the contact analysis (permissible stress levels are considered), are shown below for the gears with fully modified microgeometry.

For an even load distribution, results from a standard calculation and full contact analysis are in reasonable agreement. The only difference occurs in the micro-pitting analysis, as the local load distribution accounts for modifications over tooth width in more detail.

It should be noted that the design of adequate flank modifications has been made with the contact analysis. The modifications are not disclosed by the standard results, since only the effect of the modifications on the load distribution is introduced in the standard calculation; these modifications must be documented separately by the manufacturer.

As a next step, a variation of the flank line deviation resulting from higher or lower loads can be performed. Only then can the higher detail of a full contact analysis be used. Because the impact of local overloads on the flank on the results...
is considered in detail by the contact analysis, the standard methods achieve only the general influence by load distribution factors.

Conclusion

A short overview of a full contact analysis — as a mechanical approach to determine the local flank loads — has been given. The method considers mutual influences between the machine elements in a gearbox and allows one to determine adequate flank modifications. Safety factors or power ratings are not easily derived from a contact analysis, since allowable stress limits are to be agreed upon.

Standard methods documented in ISO 6336 yield safety factors, since allowable stress limits are documented. The influence of gearbox deformation must be introduced by load factors that are input values. A detailed design of flank modifications is not the focus of the standard method.

An example calculation shows the following conclusions:

- Standard method allows for accepted documentation of capacity
- Contact analysis provides necessary flank deviations and covers system interaction
- Load capacity is well-determined by the standard (ISO6336) and is in good agreement with extended methods that are based on a contact analysis for fully modified gears

More than ever, a full numerical analysis and a full standard analysis provide combined data that allow for high-tech gear design and accepted documentation, while keeping essential know-how of the design in the company. Furthermore, the contact analysis allows a “shift” of properties between goals and to detect possible deficiencies by considering flank deviations in a detailed way.

Today’s high-tech gear design is driven by experience in using the standard and combining it with a customized local contact analysis.

Calculation methods and the software RIKOR in the FVA-workbench were developed with support by the German Drivetrain Association (FVA e.V).
References

17. Dr.-Ing. M. Otto.
19. Prof. Dr.-Ing. K. Stahl, FZG, Technical University Munich

For more information. Questions or comments regarding this paper? Please contact Dr. Michael Otto; otto@fzg.mw.tum.de.
Kapp Technologies, Penta Gear and Koepfer America
ANNOUNCE TECHNICAL SALES COLLABORATION

Kapp Technologies L.P. (KTLP), Penta Gear Metrology LLC (PGM) and Koepfer America LLC (KA) have entered into an agreement for technical sales representation and collaboration in North America.

The companies will share technical sales and engineering resources to support the growing demand for gear hobbing, shaping, chamfering, grinding, and measurement equipment and tools.

Customers seeking efficient access to gear manufacturing solutions will see that all three companies have actively expanded their product offerings to meet customer requirements. This collaboration ensures all gear manufacturers have swift access to the latest technologies available.

KA, newly named Helios Gear Products LLC and based in South Elgin, IL, has earned a reputation for excellence in serving its customer base for over 30 years with premium hobbing, shaping, hob sharpening, chamfering, and analytical measurement technology. KTLP, based in Boulder, CO, provides precision gear and rotor tooth grinding and measuring equipment to all market sectors. PGM, based in Dayton, OH is an innovator in analytical measuring machine control, software, and functional gaging solutions and became a subsidiary of KTLP in 2015.

“KTLP, PGM and KA philosophies and specific capabilities are an excellent fit” says Bill Miller of KTLP. He points out that the three companies traditionally had unique niche customer bases which is changing. Leveraging the established sales relationships will benefit collectively all customers.

Gleason
PUBLISHES COMPREHENSIVE TRAINING PROGRAM CATALOG

Companies involved in the field of gear design and manufacturing have a common requirement: well-trained employees, both in terms of understanding the basics of gearing and power transmission systems as well as understanding the latest developments in gear design, manufacturing and inspection technology.

With its “Gleason Academy”, Gleason leverages more than 150 years of expertise in producing gear manufacturing equipment to provide customers with seminars, webinars and classes in Gleason Academy locations, customers’ premises and at industry events and symposiums. Gleason’s training classes are available throughout the year on certain pre-determined dates or on request based on customer requirements.

Now, all courses available through the Gleason Academy can be found in one comprehensive catalog. The Gleason Academy offers courses in gear theory as well as hands-on gear design and manufacturing training; in total with 115 courses in 12 training centers around the globe: 4 in Europe, 4 in Asia and 4 in the Americas. While each location specializes in different gear technology topics, specific classes have been revised to be conducted in several locations to provide customers with a consistent and state-of-the-art training experience.

Marposs
EXPANDS SOFTWARE CAPABILITY WITH BLULINK ACQUISITION

Marposs has announced the acquisition of Blulink (Reggio Emilia, Italy), a company specializing in quality control and process management software development.

With a team of 40 engineers and professionals, the acquisition of Blulink expands and strengthens Marposs’ capability in developing software products. This will help Marposs support its customers and move them more quickly to realizing Industry 4.0 initiatives.

Established in 1990, Blulink has focused its work on the development of software solutions for the integrated management of quality and safety in the working environment with a goal of helping companies to grow, be more efficient and reduce costs. Its most advanced research resulted in the Quarta3 platform, released in 2012 and adopted by over 1,000 companies in Italy as well as in many countries in the world.

(www.marposs.com)
Seco Tools ANNOUNCES NEW MANAGER OF ENGINEERING SERVICES

Seco Tools has named Tyler Martin as its new manager of engineering services. Formerly the manager of technical services, Martin previously oversaw the Technical Center at Seco’s headquarters in Troy, Michigan. In addition to the Technical Center, Martin will now also manage Seco’s Engineered Solutions team, working closely with customers to assist in the development of fully optimized manufacturing processes.

“I’m very excited by the opportunity to make a greater contribution to Seco,” said Martin. “Our engineering services give our customers access to our worldwide network of experts, and I’m looking forward to working with the global team to further improve our capabilities, expand our services and develop new partnerships, all to bring even greater benefit to our customers.”

Martin initially joined Seco as a technical specialist, focusing on outside sales, before earning promotion to Seco Technical Education Program (STEP) technician in March 2011. For more than six years, Martin ran benchmark tests, evaluated new products and demonstrated techniques to students in STEP courses. At the same time, he began to pursue further education at Eastern Michigan University, where he is currently completing the coursework for his master’s degree in engineering management.

Prior to joining Seco, Martin served as a manufacturing engineer for an Illinois-based manufacturing company, overseeing the business’ CNC tooling and supply management. He also garnered experience in education as a part-time faculty member at Illinois Valley Community College, where he taught courses on CNC machining and industrial technology. Martin got his start in manufacturing as a research and development engineer following his graduation from Illinois State University with a Bachelor of Science in integrated manufacturing systems technology. (www.secotools.com)

Hexagon KEYNOTE SPEAKER KICKS OFF 2018 ASQ INSPECTION DIVISION CONFERENCE

Zachary Cobb, director of engineering and R&D in North America, Hexagon Manufacturing Intelligence, was the keynote speaker at the 2018 ASQ Inspection Division Conference. Cobb presented “Shaping the Future of Manufacturing,” a frontline view on how emerging technologies, processes and production methods are
transforming the world of manufacturing.

Cobb discussed concepts of connectivity and the importance of linking systems and information together. He addressed the role model-based engineering plays in the tools, connectivity, data analysis and quality in the organization. The presentation also covered the changing workforce and its impact on the enterprise. Attendees looking to leverage the benefits of Smart Factory practices found Cobb’s outlook on the future both helpful and exciting.

Cobb is part of a global team responsible for the design, development and support for Hexagon stationary and portable coordinate measurement machines and accessory products. He previously served in engineering management roles at Loud Technologies in Massachusetts and Mackie Designs in Reggio Emilia, Italy, where he led teams in the development of professional sound reinforcement products. Gaining expertise in engineering management at an international level, he learned the value of cross cultural awareness and its importance to engineers working in a global organization. Cobb holds a bachelor of science degree in electrical engineering (BSEE) from Worcester Polytechnic Institute. (hexagonMI.com)

Schuler Sells 100th Hot Stamping Line

In 1993, Schuler delivered the first three hot stamping lines to automobile manufacturer Ford in the USA. What was a brand-new method at the time has since established itself on the market as a global forming technology for automotive lightweight construction — and the trend continues unabated: Schuler has now sold what is the 100th hot stamping line to a Chinese automotive supplier.

“Compared with forming aluminum, carbon fiber-reinforced plastics and dual phase steels, this technology is an inexpensive alternative for lightweight automobile construction,” as Daniel Huber explained, the head of Division Hydraulic at Schuler. Oemer Akyazici, the CEO of Schuler China, added: “Chinese automobile manufacturers and automotive suppliers, such as Shanghai Superior Die Technology Co., Ltd. (SSDT) or Baowei are increasingly turning to hot stamping.”

The method, which involves heating sheet steel blanks to 930 degrees and cooling them during forming, was first introduced in the early 1990s — initially to improve passenger safety in vehicles — for example, to reinforce the doors in the Saab 9000, thus helping it to pass the stricter crash tests in the USA.

The technology was first introduced to large series production of the Ford Sierra in Europe and the Ford Mercury in the USA. The side impact beams and bumpers were created on Schuler systems at the time. After the turn of the millennium, the industry increasingly saw this method’s potential for reducing vehicle weight while keeping pace with increasing safety requirements. Because press hardened components have a greater tensile strength that cold-formed high-strength steels, the use of material can be reduced, thus making the components lighter.

In 2006, the body of the Volkswagen Passat was the first to use twelve press hardened components. To allow this to happen, Schuler had built six hot stamping lines within the shortest possible time, and installed these at the Kassel plant. “This laid the foundation for growth that is still continuing,” said Daniel Huber, general manager of the Schuler site in Waghäusel, Germany.

Currently, some 500 million hot stamped parts are produced annually on more than 400 systems worldwide. And, according to Huber, experts anticipate further growth: “Schuler identified this development at an early stage, and set up a Competence Center for press hardening at our Waghäusel site in the year 2006.” This was followed in 2016 by the Hot Stamping TechCenter in Göppingen, a research and demonstration facility at the company’s headquarters. (schulergroup.com)
December 3–6—CTI Symposium Germany 2018
Berlin, Germany. CTI Symposium Germany provides the latest automotive transmission and drive engineering for passenger cars and commercial vehicles. The international industry event delivers the appropriate platform to find new partners for purchase and sales of whole systems and components. Automobile manufacturers, transmission and component companies give an overview and outlook on technical and market trends including digital manufacturing, IoT, zero-emissions, electric vehicles, hybrid transmissions and more. Speakers include representatives from Audi,ZF, VDA, Valeo, Jaguar, LG Chem, Magna Powertrain and more. For more information, visit drivetrain-symposium.world.

December 4–6—Power-Gen International 2018
Orlando, Florida. Power-Gen International provides comprehensive coverage of the trends, technologies and issues facing the generation sector. Displaying a wide variety of products and services, Power-Gen International represents a horizontal look at the industry with key emphasis on new solutions and innovations for the future. Topics include plant performance, cyber security, energy storage, flexible generation and more. To celebrate the 50th anniversary, the show is awarding 50 scholarships to new attendees. Learn more at www.power-gen.com.

December 5–7—AGMA Steels for Gear Applications
Clearwater Beach, Florida. This new AGMA class allows attendees to make use of steel properties in a system solution and understand the potential that different steel options can offer for their various applications. Those in attendance will explore performance of the material and how the steel produced effects the component and system. Objectives include material properties, selecting materials, verifying and specifying steel properties, and applying methods. Gear engineers, gear designers, material specialists or metallurgists at OEMs, Tier 1s, Tier 2s etc, production engineers, technicians and managers should consider attendance. Instructors include Lily Kamjou, Patrik Olund and Fredrik Lindberg. For more information, visit www.agma.org.

January 7–11—SciTech 2019
From its creation in 1963, the American Institute of Aeronautics and Astronautics (AIAA) has organized conferences to serve the aerospace profession as part of its core mission. Spanning over 70 technical discipline areas, AIAA’s conferences provide scientists, engineers, and technologists the opportunity to present and disseminate their work in structured technical paper and poster sessions, learn about new technologies and advances from other presenters, further their professional development, and expand their professional networks that furthers their work. Five focus areas include science and technology, aviation, space, propulsion and energy defense. For more information, visit scitech.aiaa.org.

January 14–16—A3 Business Forum 2019
Orlando, Florida. The Association for Advancing Automation (A3) Business Forum is the world’s leading annual networking event for robotics, vision & imaging, motion control, and motor professionals. Over 600 global automation leaders attended the 2018 show. A broad range of companies participate including Amazon, Ametek, GM, Fanuc, ATI, Gudel and more. The event includes keynote and breakout sessions on the human exploration of Mars, a global economic outlook, automation market update, trends in robotics, responsible artificial intelligence and others to be announced. Networking opportunities include a golf scramble, a wellness walk, and a first timer’s reception. For more information, visit www.a3automate.org/a3-business-forum/.
DO YOU HAVE SURPLUS GEAR MACHINERY FOR SALE OR AUCTION?

You need to talk to Goldstein Gear Machinery LLC (GGM), of which Michael Goldstein was President and primary buyer and seller at his former company, Cadillac Machinery Co., Inc.

For large departments or whole plants, 100% of the SALE proceeds goes to the owner.

GGM is the only one experienced gear machinery expert to get you the highest value. Gear equipment is not like general purpose machinery; they have unique features and capabilities, which only an expert can describe and know to photograph, especially Gleason mechanical bevel equipment, of which GGM is the leading expert.

GGM has over 55 years of experience buying/selling and auctioning gear machinery, with a reputation for knowledge, experience and capability second to none. GGM, and Michael’s prior company, Cadillac Machinery, were in a joint venture with Industrial Plants Corp (IPC) in Industrial Plants Ltd (UK) (IPC-UK) and Michael was the primary auction evaluator and organizer for over 10 years. As he tracks every gear auction, worldwide, he has records of what every gear machine is sold for.

Get experience and Knowledge working for you

www.garrmachineryexchange.com
I want to receive/continue to receive Gear Technology

Thanks anyway, but I don’t need the world’s best publication on gear engineering and manufacturing.

Name ________________________ Job Title ________________________
(please print)

Signature ________________________ Date ________________________
(required)

How would you like to receive Gear Technology?

☐ PRINT version (Verify mailing info below)
☐ DIGITAL Version (E-mail required)
☐ BOTH Print AND Digital (E-mail required)

E-mail ___*

How are you involved with GEARS?

☐ My company MAKES GEARS (20)
☐ My company BUYS GEARS (22)
☐ I DESIGN gears (23)
☐ I am a SUPPLIER to the GEAR INDUSTRY (24)
☐ OTHER (Please describe) ________________________

What is your company’s principal product or service? ________________________

MAILING INFORMATION

NAME: ________________________ JOB TITLE: ________________________
COMPANY: _______________________ ADDRESS: ________________________
☐ Check if this is a home address
CITY: ________________________ STATE/Province: ________________________
ZIP/Postal Code: ________________________ PHONE: ________________________
FAX: ________________________

Put your business card here to make it easier!

Mail to: 1840 Jarvis Ave., Elk Grove Village, IL 60007 USA
or
FAX to 1-847-437-6618
SCAN to: subscribe@geartechnology.com

*Your PRIVACY is important to us. You get to CHOOSE how we use your personal information. The next e-mail we send you will have clear instructions.
Regular readers of Gear Talk, our bi-weekly gear blog courtesy of Charles Schultz, know that he is extremely passionate about building an educational library and keeping detailed records in order to best transfer a company’s gear knowledge from one generation to the next.

While we adhere to this in the pages of Gear Technology, it’s worth noting that technical journals, magazines and 1,800 page bevel gear textbooks are not the only way to learn a little something about this great industry of ours.

Technology today allows a person in Michigan (already freezing in November) to take a tour of a forging plant halfway across the globe. It allows that same person to put on a VR headset and see what is happening in a German cutting tool factory in real-time.

Books and magazines are great (and necessary to document manufacturing and engineering technology as it evolves), but don’t forget that little Chrome, Safari, Edge, Firefox or Internet Explorer shortcut on your computer. The Internet has a world of good — sometimes bad — information available to those with a simple curiosity about how and why things work. Some examples:

Extreme Forging

Forging is a definite showstopper in manufacturing. If you can set up a tour of a forging factory, the Addendum team strongly suggests making it happen. However, a forging factory is very loud, very hot and the walls and floors tend to vigorously shake. An easier more comfortable solution to see how things work at a forging plant is to visit the following link:

www.youtube.com/watch?v=daZXEM-j_YA

Big Gears

Is there anything more fascinating than a gigantic gear wheel? How is it built? How is it cut? How do they move that thing across state lines and put it to work? YouTube has a treasure trove of big gear videos including one where FLSmidth produces gear units and drive solutions for the cement and minerals industries (www.youtube.com/watch?v=SH1znWhb-a4) and one where HMC in Indiana gives insight into the manufacture of a girth gear (www.youtube.com/watch?v=OILZgEQuUtw)

Wind Turbine Gearbox Inspection

My bucket list includes climbing up a wind turbine one day to watch professionals inspect the gearbox. This is probably not going to happen due to OSHA regulations. The next best thing is watching it play out over YouTube with some catchy music in the background. No fear of heights, no papers to sign, just some good ole fashioned gearbox inspection footage and a sick drumbeat! www.youtube.com/watch?v=z4vKzrGPnE8

Testing the Factory of the Future at Purdue

Professor Karthik Ramani of Purdue University is joining forces with manufacturers to build virtual factories using augmented reality — so they can test new labor-saving technologies in the virtual world, before installing them in the real world.

Is an autonomous robot going to make a factory more productive? With augmented reality, they can physically simulate how workers will interact with a robot, or any other new technology. They can virtually experiment with rearranging their shop floor to maximize productivity. And if new technologies are successful, they can use augmented reality to train new workers — in essence, they can become pre-skilled to work efficiently, before they ever set foot on the factory floor. This is just one example of technology driving innovation in manufacturing.

There is plenty of information online to satisfy the most curious person. There are countless books, magazines, websites, and videos dedicated to teaching us how to manufacture a spur gear in our basement, what the inside of a girth gear looks like or how to 3D-print a gear and put it to good use inside an aircraft.

It’s equally as important to get out into the real world and see as much of this firsthand as you can, but never forget the power of a good web search. Thanks to the Internet, you’ve got a potential classroom in front of you every morning you sit down at your desk with a cup of coffee.
We’re more than a manufacturer.
When you partner with Ipsen, you get the support and resources of an entire team dedicated to your success.

Ipsen Customer Service (ICS)
Provides comprehensive aftermarket support and services for any brand of atmosphere or vacuum heat-treating system.

Project Management
Manages every project and operates as the centralized point of contact, ensuring your furnace or retrofit is completed on time, within budget and to the highest quality standards.

Marketing
Assists with co-promoting your new furnace or retrofit through press releases, testimonials, videos and professional photography.

Quality Control (QC)
Complies with the requirements of ISO 9001:2015 for the design, manufacturing, inspection and testing of all heat-treating equipment.

IpsenUSA.com
All you need is a Klingelnberg Precision Measuring Center. It measures it all, including form and surface roughness. There’s a good reason why Klingelnberg Precision Measuring Centers are widely-used standard measuring systems in the industry and serve as a reference for metrology institutes.

Are you looking for solutions to increase productivity?
Then contact us at:
info@klingelnberg.com
www.klingelnberg.com