• TOPICS
    • Design
    • Manufacturing
    • Inspection
    • Heat Treating
    • Lubrication
    • Materials
    • The Gear Industry
    • Gears by Type
  • MAGAZINE
    • Current Issue
    • Departments
    • Archives
    • Subscribe
    • Advertise
  • NEWSLETTER
    • Subscribe
  • VIDEO
    • Gear Technology TV
      • Ask the Expert Live
      • Revolutions
    • Industry Videos
  • BLOGS
  • BUYER'S GUIDE
  • NEWS and EVENTS
    • Product News
    • Industry News
    • Events
  • ADVERTISING
    • Brand Awareness
      • Print: Display Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Newsletter Sponsored Content (Native Advertising)
    • Response & Lead Generation
      • Online: Sponsored Content (Native Advertising)
      • E-mail: Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • Online: Buyers Guide
    • Print Advertising
      • Print: Display Advertising
      • Print: MPT Expo Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
      • Print: Specifications
      • MPT Expo Show Guide Advertising
    • Online Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • Online: Buyers Guide
      • Online: Specifications
    • E-mail Advertising
      • E-mail: E-Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: AGMA Industry News
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Specifications
    • Special Promotions
      • Print: MPT Expo Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
      • MPT Expo Show Guide Advertising
  • CONTACT US
  • AGMA
    • Membership
    • Events
    • Education
    • Emerging Technology
    • AGMA Media
    • Standards
Subscribe
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » Keywords » planetary gears

Items Tagged with 'planetary gears'

ARTICLES

Influence of Planet Carrier Misalignments on the Operational Behavior of Planetary Gearboxes

July 1, 2020
This study deals with the modeling and consideration of misalignments in planetary gearboxes in the optimization and design process. Procedures for taking into account misalignments in cylindrical gearboxes are standardized and established in industry. Misalignments of central elements like carrier, sun gear or ring gear in planetary gearboxes, cause varying contact positions and variable loads, depending on the angular position of the central elements. This load, which is variable over the circumference, is not taken into account in the standardized procedures, despite its effects on the loads on the gears.
Read More

New Guideline for Determining the Reliability of Planetary/Spur Gear Units

May 1, 2020
In the wind power industry, the reliability of powertrain components plays a major role. Especially in multi-megawatt offshore applications, an unplanned replacement of drivetrain components can lead to extremely high costs. Hence, the expectation of wind farm operators is to forecast the system reliability. Under the leadership of the VDMA (Mechanical Engineering Industry Association), the standardization paper 23904 "Reliability Assessment for Wind Turbines" was published in October 2019.
Read More

Gear Ratio Epicyclic Drives Analysis

June 1, 2014
It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.
Read More

Planet Carrier Design

January 1, 2014
Charles D. Schultz
With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?
Read More

Design and Optimization of Planetary Gears Considering All Relevant Influences

November 1, 2013
Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.
Read More

Light-Weight Design for Planetary Gear Transmissions

September 1, 2013
There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.
Read More

Analysis of Load Distribution in Planet Gear Bearings

September 1, 2011
In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.
Read More

A Planetary System that Increases Power Density

January 1, 2005
Turnkey Design Services is manufacturing a planetary gear system to increase power density.
Read More

Effects of Planetary Gear Ratio on Mean Service Life

July 1, 1998
Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.
Read More

Stress of Planet Gears with Thin Rims

March 1, 1994
This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.
Read More
More Articles Tagged with 'planetary gears'
Free Gear Technology Subscriptions
Subscribe
Free Gear Technology Subscriptions
Subscribe
FEATURED VIDEO
  • Helios1
    Forest City Gear Taps Helios Gear for Custom Cutting Tools
January 18, 2023
RECOMMENDED
  • 2022 Gear Technology Buyer's Guide

    December 5, 2022
    gt1122-buyers-guide.jpg
  • Reigniting the Educational Infrastructure

    December 5, 2022
    gt1122_Page_20_Image_0001.jpg
  • Profile: Continuing Education and Training with the AGMA

    December 5, 2022
    gt1122_Page_26_Image_0001.jpg
  • Polished Up!

    February 13, 2023
    gt0123_Page_38_Image_0002.jpg
  • Remaining Competitive

    February 13, 2023
    gt0123_Page_42_Image_0001.jpg
  • Polished Up!

    February 13, 2023
    gt0123_Page_38_Image_0002.jpg
  • Remaining Competitive

    February 13, 2023
    gt0123_Page_42_Image_0001.jpg
  • 2022 Gear Technology Buyer's Guide

    December 5, 2022
    gt1122-buyers-guide.jpg
  • Subscribe
  • Advertise
  • Contribute
  • AGMA
Powered byAGMA
Copyright © 2023 Gear Technology
  • Privacy Policy
  • Contact