In a capitalist society, the way things usually work is that government
and academia focus on research and
development, while industry focuses
on commercialization. The result
is an increasingly wide disconnect in
the applied research sector, which deals
primarily with technology development
and demonstration.
The essence of designing gears is often by necessity risk-averse, given that many of them are used in applications where loss of life is a distinct possibility. The Gear Research Institute (GRI) at The Pennsylvania State University conducts risk reduction testing with the same goal in mind - whether it be gears in fighter jets, Ferris wheels, tanks, or countless other gear-reliant vehicles and machinery.
When, in 1980, OSU professor Donald R. Houser created the Gear and Power Transmission Research Laboratory - then known as the Gear Dynamics and Gear and Power Transmission Laboratory (GearLab) - he did so with the seed money provided
by just three companies. Thirty-three years out, the lab has continued to grow, impress and—most importantly - succeed; it now boasts a roster of some 50 sponsoring companies and government agencies.
It is said that “The squeaky wheel
gets the grease.” Ok, but what about gear noise? We talked to three experts with
considerable knowledge and experience
in this area.
Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.
In 1993, M & M Precision Systems was awarded a three-year, partial grant from the Advanced Technology Program of the Department of Commerce's National Institute of Standards and Technology (NIST). Working with Pennsylvania State University, M&M embarked on a technology development project to advance gear measurement capabilities to levels of accuracy never before achieved.
The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.
Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.