Uncover the processes and furnaces used for the steel case hardening solutions. Ben Bernard from Surface® Combustion, Inc. describes these options and reveals the advantages and disadvantages of the various options.
Widia recently launched the WCE solid end milling platform, delivering affordable performance and reliability for small to medium machine shops. The initial release of the WCE platform features WCE4, a four-flute geometry which combines advanced, high-performance features with a brand new, versatile grade offered at a highly competitive price.
Gear designers face constant pressure to increase power density in their drivetrains. In the automotive industry, for example, typical engine torque has increased significantly over the last several decades. Meanwhile, the demands for greater fuel efficiency mean designers must accommodate these increased loads in a smaller, more lightweight package than ever before. In addition, electric and hybrid vehicles will feature fewer gears, with fewer transmission speeds, running at higher rpms, meaning the gears in those systems will have to endure life cycles far beyond what is typical with internal combustion engines.
It is becoming increasingly apparent that material properties can and will play a greater role than before in addressing the challenges most transmission manufacturers are facing today. Making use of materials' intrinsic fatigue properties provides a new design tool to support the market changes taking place.
The increasing demands in the automotive
industry for weight reduction, fuel
efficiency and a reduced carbon footprint need to be addressed urgently. Up until now, widely used conventional steels have lived up to expectations. However, with more stringent emissions standards,
demands on materials are increasing.
Materials are expected to perform better, resulting in a need for increased fatigue strength. A possibility to increase torque
on current generations without design
changes can be achieved by selecting suitable materials.
Broaching is a machining technique commonly used to cut gear teeth or cam profiles for the high volume manufacture of power transmission parts used in vehicles (Refs. 1–2). This article shows how the right gear blank material can make all the difference if you want to get more parts out of each tool.