Like many Americans, I've been trained with the idea that those who see a problem should be the ones responsible for helping to solve it. If you see
that something is broken, and you know how to fix it, don't wait for your dad, your boss or the government to tell you what to do. Just fix it.
The hob is a perfect example of how a little manufacturing ingenuity can make a reliable, highly productive cutting tool. It's an engineering specimen
that creates higher cutting speeds, better wear resistance and increases rigidity. The cutting tool alone, however, can't take all the credit for its resourcefulness. Advanced coating
technology from companies like Sulzer, Oerlikon Balzers, Ionbond, Seco Tools and Cemecon helps improve cutting tools by reducing overall costs, increasing tool life and maintaining the highest levels of productivity. The following is a quick recap of new technologies
and the latest information in the coating market.
Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.
It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their
services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.
The essence of designing gears is often by necessity risk-averse, given that many of them are used in applications where loss of life is a distinct possibility. The Gear Research Institute (GRI) at The Pennsylvania State University conducts risk reduction testing with the same goal in mind - whether it be gears in fighter jets, Ferris wheels, tanks, or countless other gear-reliant vehicles and machinery.
A gear design optimization approach applied to reduce tooth contact temperature and noise excitation of a high-speed spur gear pair running without lubricant. Optimum gear design search was done using the Run Many Cases software program. Thirty-one of over 480,000 possible gear designs were considered, based on low contact temperature and low transmission error. The best gear design was selected considering its manufacturability.
It is widely recognized that the reduction of CO2 requires consistent
light-weight design of the entire vehicle. Likewise, the trend towards electric cars requires light-weight design to compensate for the additional weight of battery systems. The need for weight reduction is also present regarding vehicle transmissions. Besides the design of the gearbox housing, rotating masses such as gear wheels and shafts have a significant impact on fuel consumption. The current technology shows little potential of gear weight reduction due to the trade-off between mass optimization and the manufacturing process. Gears are usually forged followed or not by teeth cutting operation.
Composite spur gears were designed, fabricated and tested at NASA Glenn Research Center. The composite web was
bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The hybrid gear was tested against an all-steel gear and against a mating hybrid gear. Initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.
This machine concept facilitates highly
productive profile grinding for large workpieces. The range for external and internal gears comprises models for manufacturing workpieces up to 2,000 millimeters – for industrial gear units, wind power, and marine propulsion applications
What's new on the Gear Technology website this month? Videos from DMG Mori-Seiki, the latest e-mail newsletter and updates on upcoming events, including the Kapp-Niles Rocky Mountain Gear School.