Summer never lasts as long as you want it to. By the time you read this, you'll be well into the hazy, lazy days, and the season will be gone before you know it. That means you're running out of time to make plans to attend our industry's most important event. Of course, I'm talking about Gear Expo (October 24 - 26) and the AGMA Fall Technical Meeting (October 22 - 24), both of which will take place in Columbus,
OH.
AGMA Sets Up Shop in Living Laboratory of the Midwest. Columbus, Ohio recently surpassed Indianapolis as the second largest city in the Midwest behind Chicago, according to the United States Census Bureau. This could change come the
2020 census, but there's no denying
Buckeye Nation is going places.
There is so much more to Gear Expo than gears or the machinery that makes them. That's because it takes much, much more to make a finished gear than even the most sophisticated machine. And it is exhibitors who are part of the "much, much, more" that are addressed in this article.
RCD Engineering's switch from manual to CNC hobbing operations breaks gear manufacturing lead time records with
Bourn & Koch 100H in their gear production pit crew.
When a gearbox remanufacturer is trying to decide whether to regrind or replace a gear, any number of factors could be running through their head. Here are some remanufacturers' processes on how they reach the conclusions they do, and why you should listen to them.
Skiving will be front and center when the gear industry comes together in Columbus this October. Attendees will find dedicated skiving equipment, multifunctional machines with skiving options and a slew of new cutting tools, machine designs and modifications to make the process more efficient and robust.
Toyoda's new GS300H5 Gear Skiving Center is the first in the world to equip a skiving function to a general purpose horizontal machining center (HMC), through which mass production of gear parts is achieved. CNC controls and a high speed rotary table were developed specifically to achieve high-speed, multifunctional machining, as a compact and lightweight product, simple in programming functions.
The usage of modern thrusters allows combining the functions of the drive and the ship rudder in one unit, which are separated in conventional ship propulsion systems. The horizontally oriented propeller is supported in a vertically rotatable nacelle that is mounted underneath the ship's hull. The propeller can directly or indirectly be driven by an electric motor or combustion engine. Direct drive requires the installation of a low-speed electric motor in the nacelle. This present paper concentrates on indirect drives where the driving torque is transferred by bevel gear stages and shafts from the motor to the propeller.
The deformation of the gear teeth due to load conditions may cause premature tooth meshing. This irregular tooth contact causes increased stress on the tooth flank. These adverse effects can be avoided by using defined flank modifications, designed by means of FE-based tooth contact analysis.
In order to improve load-carrying capacity and noise behavior, gears usually have profile and lead modifications. Furthermore, in gears where a specified tooth-flank load application direction (for drive and coast flanks) is a design enhancement, or even compulsory, the asymmetric tooth profile is a further solution. Nowadays, many gears need to be hard finished. Continuous generating grinding offers a very high process efficiency, but is this process able to grind all modifications, especially asymmetric gears? Yes, it is!
Faithful readers of this space know we sometimes like to use Addendum to give relatively unknown 19th Century mechanical engineers/inventors their well-deserved props. Like, for example, William Brunton (1777-1851), who is credited - but generally unknown - with inventing the Steam Horse, also known as the Mechanical Traveler.
At the mid-year point of 2017, it appears that the U.S. economy, and the manufacturing sector in particular, are gradually accelerating, with most markets seeing an upside breakout from the flat or down conditions of 2015 and 2016.
EMO is arguably the most important trade show when it comes to the introduction of machine tool technology, and this year's show - taking place
from September 18-23 in Hannover, Germany - promises not to disappoint. We've talked to a number of gear manufacturing technology providers to give you a sneak peak of what you can expect to see if you attend this year.