Which transmission system will come out on top is a hot topic in the automotive community. With multiple transmission-centric conferences on the horizon, there will be plenty of debate, but how much will the answer actually affect gear manufacturers, and when?
Large, multi-segmented girth gears do not behave like the relatively compact, rigid, monolithic structures we typically envision when discussing gear manufacturing. Girth gears are very large, non-rigid structures that require special care during the machining of individual mating segments as well as the assembled gear blank itself.
Reduced component weight and ever-increasing power density require a gear design on the border area of material capacity. In order to exploit the potential offered by modern construction materials, calculation methods for component strength must rely on a deeper understanding of fracture and material mechanics in contrast to empirical-analytical approaches.
It is becoming increasingly apparent that material properties can and will play a greater role than before in addressing the challenges most transmission manufacturers are facing today. Making use of materials' intrinsic fatigue properties provides a new design tool to support the market changes taking place.
A reader wonders about gears where the tops of the teeth are the bearing surface, as used in spur gear differentials. Do they require any special construction or processing?