Abrasive Machinery - Search Results

Articles About Abrasive Machinery


Articles are sorted by RELEVANCE. Sort by Date.

1 Industry News (May 2020)

The complete Industry News section from the May 2020 issue of Gear Technology.

2 Grinding and Abrasives (May/June 2004)

Flexibility and productivity are the keywords in today’s grinding operations. Machines are becoming more flexible as manufacturers look for ways to produce more parts at a lower cost. What used to take two machines or more now takes just one.

3 Crossroads and Transitions - Part II (July 2009)

The auction has been held. The warehouse is bare. The computers and furniture are being packed, and Cadillac Machinery, the company started by my father in 1950, and of which I was president for more than 25 years, is close to being no more.

4 Reinvesting in New Equipment Pays Dividends (November/December 2007)

Recently, I was approached by a colleague who is a manufacturer outside the gear industry...

5 ...And from the Industry (October/November 1984)

Industry News from October/November 1984 Gear Technology.

6 Grinding Bevel Gears on Cylindrical Gear Grinding Machines (January/February 1994)

Power train designs which employ gears with cone angles of approximately 2 degrees to 5 degrees have become quite common. It is difficult, if not impossible, to grind these gears on conventional bevel gear grinding machines. Cylindrical gear grinding machines are better suited for this task. This article will provide an overview of this option and briefly introduce four grinding variation possibilities.

7 Back in the Good Old Days (September/October 1998)

Come with us now to those thrilling days of yesteryear...Ok, this is not the Cisco Kid, but we do have a little game for you. Guess the year the following advertisements and excerpt were printed - they all appeared in a dingle issue of Machinery Magazine.

8 Industry News (October 2012)

The complete Industry News section from the October 2012 issue of Gear Technology.

9 GT Extras (January/February 2014)

Video from C&B Machinery; Introducing the Gear Technology Blog, featuring technical editor Charles D. Schultz; plus an online-exclusive article on big gear inspection.

10 Industry News (November/December 2013)

The complete Industry News section from the November/December 2013 issue of Gear Technology.

11 IMTS 2014 Product Preview (August 2014)

An in-depth look at the major booths with the latest technology used in gear manufacturing.

12 Thermal Behavior of a High-Speed Gear Unit (January/February 2016)

In this paper a thermal network model is developed to simulate the thermal behavior of a high-speed, one-stage gear unit which is jet-lubricated.

13 Industry News (January/February 2016)

Latest new from the Gear Industry

14 Grinding It Out (January/February 2018)

C & B Machinery Meets Rigorous Demands with Installation of Manufacturing Cell.

15 Product News (September/October 2018)

See the latest gear industry products from Marposs, GWJ Technology, Norton|Saint Gobain, Mitutoyo, C&B Machinery, DMG Mori, Gear Motions and LK Metrology.

16 Industry News (March/April 2020)

The complete Industry News section from the March/April issue of Gear Technology.

17 Product News (July 2020)

The latest gear industry products from WFL Millturn, NUM, Superior Abrasives, GWJ Technology, Helios Gear Products, CAS Dataloggers and SMW Autoblok.

18 Industry News (July 2019)

The complete Industry News section from the July 2019 issue of Gear Technology.

19 CNC Controlled CBN Form Grinding (May/June 1984)

Borazon is a superabrasive material originally developed by General Electric in 1969. It is a high performance material for machining of high alloy ferrous and super alloy materials. Borazon CBN - Cubic Born Nitride - is manufactured with a high temperature, high pressure process similar to that utilized with man-made diamond. Borazon is, next to diamond, the hardest abrasive known; it is more than twice as hard as aluminum oxide. It has an extremely high thermal strength compared to diamond. It is also much less chemically reactive with iron, cobalt or nickel alloys.

20 Hard Gear Finishing With CBN-Basic Considerations (May/June 1998)

For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.

21 Hard Gear Finishing (March/April 1988)

Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

22 Enhanced Product Performance--Through CBN Grinding (September/October 1988)

Modern manufacturing processes have become an ally of the product designer in producing higher quality, higher performing components in the transportation industry. This is particularly true in grinding systems where the physical properties of CBN abrasives have been applied to improving cycle times, dimensional consistency, surface integrity and overall costs. Of these four factors, surface integrity offers the greatest potential for influencing the actual design of highly stressed, hardened steel components.

23 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

24 Classification of Types of Gear Tooth Wear - Part I (November/December 1992)

The phenomena of deterioration of surfaces are generally very complex and depend on numerous conditions which include the operating conditions, the type of load applied, the relative speeds of surfaces in contact, the temperature, lubrication, surfaces hardness and roughness, and the compatibility and nature of materials.

25 Classification of Types of Gear Tooth Wear - Part II (January/February 1993)

The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.

26 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

27 Industry News (January/February 2013)

The complete Industry News section from the January/February 2013 issue of Gear Technology.

28 Industry News (June 2019)

The complete Industry News section from the June 2019 issue of Gear Technology./

29 Product News (August 2013)

The complete Product News Section from the August 2013 issue of Gear Technology.

30 Brad Foote and 3M Collaborate on Testing of Ground Parts (March/April 2014)

Cubitron II wheels are put to the test in this case study.

31 In Search of a Competitive Advantage (March/April 2014)

The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.

32 Product News (June 2016)

News about the Latest Products

33 Spin City (November/December 2018)

Grinding Wheel Technology Focuses on Speed, Efficiency and Time Savings

34 Industry News (January/February 2019)

The complete Industry News section from the January/February 2019 issue of Gear Technology.

35 Industry News (November/December 2020)

The complete Industry News section from the November/December 2020 issue of Gear Technology.