High Power Density - Search Results

Articles About High Power Density

Articles are sorted by RELEVANCE. Sort by Date.

1 Load Distribution in Planetary Gears (May/June 2001)

Two-shaft planetary gear drives are power-branching transmissions, which lead the power from input to output shaft on several parallel ways. A part of the power is transferred loss-free as clutch power. That results in high efficiency and high power density. Those advantages can be used optimally only if an even distribution of load on the individual branches of power is ensured. Static over-constraint, manufacturing deviations and the internal dynamics of those transmission gears obstruct the load balance. With the help of complex simulation programs, it is possible today to predict the dynamic behavior of such gears. The results of those investigations consolidate the approximation equations for the calculation of the load factors...

2 A Model of the Pumping Action Between the Teeth of High-Speed Spur and Helical Gears (May/June 2004)

For a high-speed gearbox, an important part of power losses is due to the mesh. A global estimation is not possible and an analytical approach is necessary with evaluations of three different origins of power losses: friction in mesh contact, gear windage and pumping effect between teeth.

3 Development of High-Hardness-Cast Gears for High-Power Mining Applications (January/February 2017)

Multiple possibilities are available to increase the transmissible power of girth gears. These solutions include: using a larger module, increasing of the gear diameter through the number of teeth, enlarging the face width, and increasing the hardness of the base material. The first three parameters are mostly limited by cutting machine capability. Module, outside diameter, and face width (for a cast gear) can theoretically be increased to infinity, but not the cutting machine dimensions. There are also practical limits with respect to the installation of very large diameter/large face width gears.

4 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

5 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

6 What's In a Name (March/April 2019)

As most of you know by now, the trade show formerly known as Gear Expo is now the Motion + Power Technology Expo. If you're a gear-industry veteran, you might be confused by this change. If you've been coming to the show for years - or exhibiting at it - you might even feel a little betrayed. But I'm here to tell you it's going to be alright.

7 Internet Adventures, Part II powertransmission.com (January/February 1997)

In July of 1996 we introduced the gear community to the Internet in these pages through the Gear Industry Home Page (GIHP). This electronic buyers guide for gear machine tools, tooling, accessories and services has proven to be more popular than we could have envisioned. In our first month, we had over 3,000 hits, and in our third month, we have over 4,500. By our fourth month, we topped the 7,000 mark, and we are on our way to 11,000 hits in November. As our advertisers develop their own home sites in order to offer layers of information about their companies, their products and services, we expect this activity will increase even more.

8 Show Stoppers (August 2019)

When you go to MPT Expo, make sure to visit the exhibitors in our special advertising section!

9 High Power Transmission with Case-hardened Gears and Internal Power Branching (January/February 1985)

In the field of large power transmission gear units for heavy machine industry, the following two development trends have been highly influential: use of case hardened gears and a branching of the power flow through two or more ways.

10 Determining Power Losses in the Helical Gear Mesh (September/October 2005)

This article reviews mathematical models for individual components associated with power losses, such as windage, churning, sliding and rolling friction losses.

11 Gear Applications All the Rage at Windpower 2010 (June 2010)

Capitalizing on a burgeoning new technology where gears are of great import, the gear community gathered en masse at the American Wind Energy Association’s Windpower Expo 2010.

12 Reaching Out (March/April 2011)

Publisher Michael Goldstein describes the success of Gear Technology's new e-mail newsletter programs.

13 Flank Load Carrying Capacity and Power Loss Reduction by Minimized Lubrication (May 2011)

The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.

14 MPT Expo is all about Learning (August 2019)

In addition to hundreds of relevant suppliers, Motion+Power Technology Expo (Oct. 15-17 in Detroit) also offers many opportunities for learning.

15 Rattle: Addressing Gear Noise in a Power Take-off (January/February 2012)

At Muncie Power, the objective of noise and vibration testing is to develop effective ways to eliminate power take-off (PTO) gear rattle, with specific emphasis on PTO products. The type of sound of largest concern in this industry is tonal.

16 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

17 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

18 Industry News (September/October 2018)

Liebherr and Wenzel announce sales and service agreement; MPIF releases new powder metal standard; Gear Motions announces promotions; Profilator opens new factory and more gear industry news.

19 Experimental Characterization of Bending Fatigue Strength in Gear Teeth (January/February 2003)

The effort described in this paper addresses a desire in the gear industry to increase power densities and reduce costs of geared transmissions. To achieve these objectives, new materials and manufacturing processes, utilized in the fabrication of gears, and being evaluated. In this effort, the first priority is to compare the performance of gears fabricated using current materials and processes. However, once that priority is satisfied, it rapidly transforms to requiring accurate design data to utilize these novel materials and processes. This paper describes the effort to address one aspect of this design data requirement.

20 Going to Gear Expo (September 2013)

Like many of you in the gear industry, we’ve been working extremely hard over the past few months getting ready for Gear Expo 2013, which takes place September 17-19 in Indianapolis.

21 Low Loss Gears (June 2007)

In most transmission systems, one of the main power loss sources is the loaded gear mesh. In this article, the influences of gear geometry parameters on gear efficiency, load capacity, and excitation are shown.

22 Industry News (October 2013)

The complete Industry News section from the October 2013 issue of Gear Technology.

23 Power Skiving of Cylindrical Gears on Different Machine Platforms (January/February 2014)

It has long been known that the skiving process for machining internal gears is multiple times faster than shaping, and more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.

24 Getting the Right Tools (September/October 2014)

So there is little chance that they need the same software to assist with their work. Gone are the days when companies wrote their own code and process engineers thumbed the same tattered reference book.

25 NOME Is Where The Energy Is (May 2016)

According to the U.K.-based WITT Energy website (witt-energy.com), "The WITT is the only device in the world that can capture energy from all movement and turn it into electricity. No other energy system can exploit the full spectrum of movement, enabling it to harvest power from water (sea, river or tidal), wind and human or animal motion."

26 Wind Turbine Gearbox Reliability (June 2017)

A high number of wind turbine gearboxes do not meet their expected design life, despite meeting the design criteria of current bearing, gear and wind turbine industry standards and certifications.

27 Gear Show 4.0 (August 2019)

There have always been plenty of reasons to attend Gear Expo. For decades, it’s been the best place to see all of the technology, vendors and solutions in the gear industry, all under one roof. Now that it's the Motion + Power Technology Expo, it's even more true.

28 Why Monitor My Power Consumption (September/October 2017)

At first, monitoring the energy I use at my plant or the energy for each individual machine seemed trivial. Isn't this just an overhead cost I have to pay? I'm certainly not going to turn off a machine that costs too much to run when I have to get a job out for that month. Then, I realized how much savings there was for monitoring power consumption and the ROI was timely.

29 Windpower 2009 Relocates in Light of Record Growth (January/February 2009)

It’s not too often a trade show so far surpasses organizers’ expectations for size that it must be relocated. This was just the dilemma the American Wind Energy Association (AWEA) faced with the Windpower 2009 Conference and Exhibition, which was originally scheduled to take place in Minneapolis, but will now be held at McCormick Place, Chicago.

30 Moving Heat Treating In-Line (March/April 2019)

Single Piece Flow Streamlines Production for High-Volume Gear Manufacturers.

31 Calculated Scuffing Risk: Correlating AGMA 925-A03, AGMA 6011-J14 and Original MAAG Gear Predictions (March/April 2020)

This paper relates specifically to gears that are finish ground and considered high speed per ANSI/AGMA 6011; meshing elements with PLVs (pitch line velocities) in excess of 35 m/s or rotational speeds greater than 4,500 rpm.

32 Low-Distortion Heat Treatment of Transmission Components (October 2011)

This paper presents how low pressure carburizing and high pressure gas quenching processes are successfully applied on internal ring gears for a six-speed automatic transmission. The specific challenge in the heat treat process was to reduce distortion in such a way that subsequent machining operations are entirely eliminated.

33 Low Pressure Carburizing of Large Transmission Parts (September/October 2009)

Often, the required hardness qualities of parts manufactured from steel can only be obtained through suitable heat treatment. In transmission manufacturing, the case hardening process is commonly used to produce parts with a hard and wear-resistant surface and an adequate toughness in the core. A tremendous potential for rationalization, which is only partially used, becomes available if the treatment time of the case hardening process is reduced. Low pressure carburizing (LPC) offers a reduction of treatment time in comparison to conventional gas carburizing because of the high carbon mass flow inherent to the process (Ref. 1).

34 New Potentials in Carbide Hobbing (January/February 2004)

To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.

35 Ask the Expert: High Ratio Hypoid Gear Efficiency (May 2012)

Our question this issue deals with high-ratio hypoid gears, and it should be noted here that this is a tricky area of gearing with a dearth of literature on the topic. That being the case, finding “experts” willing to stick their necks out and take on the subject was not a given.

36 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

37 Cutting Gears on a Machining Center (November/December 2009)

Depo provides all-in-one machining capabilities for the gear industry.

38 Low Pressure Carburizing with High Pressure Gas Quenching (March/April 2004)

High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications are presented.

39 A Further Study on High-Contact-Ratio Spur Gears in Mesh with Double-Scope Tooth Profile Modification (November/December 2008)

This paper will demonstrate that, unlike commonly used low-contact-ratio spur gears, high-contact-ratio spur gears can provide higher power-to-weight ratio, and can also achieve smoother running with lower transmission error (TE) variations.

40 High Speed Gears (September/October 2007)

Above all, a gear is not just a mechanical transmission, but is developed to a system fulfilling multiple demands, such as clutch integration, selectable output speeds, and controls of highest electronic standards. This paper shows the basics for high-speed gear design and a selection of numerous applications in detailed design and operational needs.

41 HMC Lassos World's Largest Gear Grinder (June 2008)

Hofler Rapid 6000 Makes North American Debut at Highway Machine Company.

42 Load Sharing Analysis of High-Contact-Ratio Spur Gears in Military Tracked Vehicle Applications (July 2010)

This paper deals with analysis of the load sharing percentage between teeth in mesh for different load conditions throughout the profile for both sun and planet gears of normal and HCR gearing—using finite element analysis. (FEA).

43 Super-Reduction Hypoid Gears (August 2011)

Super-reduction hypoid gears (SRH) are bevel worm gears with certain differences regarding hypoid gears. If two axes are positioned in space and the task is to transmit motion and torque between them using some kind of gears with a ratio above 5 and even higher than 50, the following cases are commonly known. Tribology Aspects in Angular Transmission Systems, Part VIII.

44 Practical Analysis of Highly-Loaded Gears by Using the Modified-Scoring Index Calculation Method (September/October 1986)

The power of high speed gears for use in the petrochemical industry and power stations is always increasing. Today gears with ratings of up to 70,000kW are already in service. For such gears, the failure mode of scoring can become the limiting constraint. The validity of an analytical method to predict scoring resistance is, therefore, becoming increasingly important.

45 Experience with Large, High-Speed Load Gears (July 2007)

The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.

46 High Speed Hobbing of Gears With Shifted Profiles (July/August 1988)

The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.

47 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

48 Characterizaton of Retained Austenite in Case Carburized Gears and Its Influence on Fatigue Performance (May/June 2003)

Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.

49 Design of High Contact Ratio Spur Gears Cut With Standard Tools (July/August 2003)

In high precision and heavily loaded spur gears, the effect of gear error is negligible, so the periodic variation of tooth stiffness is the principal cause of noise and vibration. High contact ration spur gears can be used to exclude or reduce the variation of tooth stiffness.

50 Off-Highway Gears (June/July 2013)

Market needs push in 2013, but will it get one? The construction/off-highway industries have been here before. New equipment, technologies and innovations during an economic standstill that some have been dealing with since 2007.

51 Riding the Rails (November/December 2013)

Are trains still a growth industry prospect for manufacturers?

52 High Temperature Gear Materials (November/December 2013)

What gear material is suitable for high-temperature (350 – 550 degree C), high-vacuum, clean-environment use?

53 Precision Gearing Lightens the Load for Off-Highway Equipment (June 2015)

Faith — paraphrasing the gospels of Matthew and Mark — can move mountains. But it helps if you have precision geared equipment.

54 Off-Highway or Off-Press, Andantex Focuses on Precision (June 2015)

Andantex USA is a part of the worldwide Redex group, a longtime provider of high-precision motion control components and systems

55 Thermal Behavior of a High-Speed Gear Unit (January/February 2016)

In this paper a thermal network model is developed to simulate the thermal behavior of a high-speed, one-stage gear unit which is jet-lubricated.

56 Off-Highway Endures Soft Markets (May 2016)

under pressure from numerous market forces. The oil sector's decline, weakened global economies (particularly China) and local government policies outnumber and outweigh relieving forces such as the FAST Act, leaving the industry in a general downturn. The outlook has yet to become truly grim, but companies are beginning to scale back.

57 Designing Very Strong Gear Teeth by Means of High Pressure Angles (June 2017)

The purpose of this paper is to present a method of designing and specifying gear teeth with much higher bending and surface contact strength (reduced bending and surface contact stresses). This paper will show calculation procedures, mathematical solutions and the theoretical background equations to do this.

58 Gear Transmission Density Maximization (November/December 2011)

This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density maximization is also considered.