Involute Gear & Machine Company - Search Results

Articles About Involute Gear & Machine Company


Articles are sorted by RELEVANCE. Sort by Date.

1 Measurement Management (July 2019)

The secret to meeting today's inspection demands is influenced by the technology and those in charge of operating it.

2 Chamfering-Deburring Still a Player - Now More than Ever (September/October 2018)

Chamfering and deburring have been described as "unloved," a "necessary evil" and, in fact - "dead." After all, manual deburring is still common in many shops.

3 Extending the Benefits of Elemental Gear Inspection (July 2009)

It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.

4 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

5 Industry News (September/October 2015)

News from the Gear Industry

6 IMTS 2014 Product Preview (August 2014)

An in-depth look at the major booths with the latest technology used in gear manufacturing.

7 Machine Marks on Gear Flanks (May 2014)

What causes shaving cutter marks on gear flanks and can they be prevented?

8 Moving Parts (May 2014)

Machine tools boost speed and throughput with automation technology.

9 In Search of a Competitive Advantage (March/April 2014)

The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.

10 GT Extras (January/February 2014)

Video from C&B Machinery; Introducing the Gear Technology Blog, featuring technical editor Charles D. Schultz; plus an online-exclusive article on big gear inspection.

11 Industry News (November/December 2013)

The complete Industry News section from the November/December 2013 issue of Gear Technology.

12 The Art of Versatility - Grinding at Gear Expo and EMO (October 2013)

Whether you spent time at Gear Expo in Indianapolis or EMO in Hannover, there was certainly new technology attracting attention. Machine tools are faster, more efficient and can integrate numerous functions in a single setup. Grinding technology is turning science upside down and inside out with high-speed removal rates and increased throughput.

13 Industry News (June/July 2013)

The complete Industry News section from the June/July 2013 issue of Gear Technology.

14 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

15 Liebherr LFG Grinding Machine (May 2013)

This machine concept facilitates highly productive profile grinding for large workpieces. The range for external and internal gears comprises models for manufacturing workpieces up to 2,000 millimeters – for industrial gear units, wind power, and marine propulsion applications

16 Balancing: Smoke and Mirrors No Longer (January/February 2013)

By virtue of collected anecdotal accounts, equations and problem solving, balancing is discussed as more math and common sense, and less smoke and mirrors.

17 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

18 Industry News (January/February 2016)

Latest new from the Gear Industry

19 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

20 Dry Gear Hobbing (July/August 1995)

Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?

21 Gear Grinding 1995 (July/August 1995)

Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.

22 Avoiding Interference In Shaper-Cut Gears (January/February 1996)

In the process of developing gear trains, it occasionally occurs that the tip of one gear will drag in the fillet of the mating gear. The first reaction may be to assume that the outside diameter of the gear is too large. This article is intended to show that although the gear dimensions follow AGMA guidelines, if the gear is cut with a shaper, the cutting process may not provide sufficient relief in the fillet area and be the cause of the interference.

23 New Gear Developments at IMTS (November/December 1996)

The International Manufacturing Technology Show provided one of the biggest ever marketplaces for buying and selling gear-making equipment, with 121601 attenders, making it the largest IMTS ever. The show took place September 4-11 at McCormick Place in Chicago, IL.

24 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

25 The Broaching of Gears (March/April 1997)

Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.

26 Thermal Effects on CMMs (September/October 1997)

The trend toward moving coordinate measuring machines to the shop floor to become an integral part of the manufacturing operations brings real time process control within the reach of many companies. Putting measuring machines on the shop floor, however, subjects them to harsh environmental conditions. Like any measuring system, CMMs are sensitive to any ambient condition that deviates from the "perfect" conditions of the metrology lab.

27 Industry News (October 2012)

The complete Industry News section from the October 2012 issue of Gear Technology.

28 Special Machine Manufacturer Brings Gear Making In-House (September/October 1997)

When you have a multi-million-dollar transfer line sitting on the shop floor waiting for gears that might take up to two months to get, you have a costly bottleneck.

29 New Guideless CNC Shaper for Helical Gears (March/April 1998)

Product announcements so often trumpet minor, incremental advances with works like "revolutionary" and "unique" that even the best thesaurus can fail to offer a fresh alternative to alert the reader when something really innovative and important is introduced. In the case of Mitsubishi's new CNC gear shaper, the ST25CNC, both terms apply.

30 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

31 Back in the Good Old Days (September/October 1998)

Come with us now to those thrilling days of yesteryear...Ok, this is not the Cisco Kid, but we do have a little game for you. Guess the year the following advertisements and excerpt were printed - they all appeared in a dingle issue of Machinery Magazine.

32 IMTS 2012 Product Preview (August 2012)

Booth previews from exhibitors showing products and services for the gear industry.

33 IMTS 2012 Product Preview (September 2012)

Previews of manufacturing technology related to gears that will be on display at IMTS 2012.

34 Thermal Behavior of a High-Speed Gear Unit (January/February 2016)

In this paper a thermal network model is developed to simulate the thermal behavior of a high-speed, one-stage gear unit which is jet-lubricated.

35 Making Music Via Marbles (June 2016)

According to his official biography, Martin Molin specializes in vibraphone and music box as the ringleader of the band Wintergatan (Swedish for The Milky Way).

36 Product News (June 2016)

News about the Latest Products

37 Identifying Equipment Failure (June 2019)

How machine tool maintenance has evolved in recent years in gear manufacturing.

38 Industry News (March/April 2016)

News from around the Gear Industry

39 Industry News (November/December 2021)

he complete Industry News section from the November/December 2021 issue of Gear Technology.

40 Optimizing the Digital Shop Floor (November/December 2021)

Federal Gear Enables IIoT Platform with Machine Metrics

41 Product News (January/February 2021)

Gear-related new technology from Helios, Chiron, C-B Gear & Machine, Marposs, Dillon Manufacturing, Schunk, Forest City Gear and more.

42 Big Gears: Seeing is Believing (November/December 2020)

This is the timely and relevant sequel to our Nov/Dec 2018 Addendum article, "Safety Guaranteed." In the original article will looked at some incredible gear applications from the safety of our desktop computers and smartphones. Who knew we would be spending most of 2020 doing the same exact thing?

43 Industry News (November/December 2020)

The complete Industry News section from the November/December 2020 issue of Gear Technology.

44 Industry News (July 2020)

The latest gear industry news from Machine Tool Builders, Global Gear, EMAG, Bourn & Koch, Klingelnberg and others.

45 Industry News (May 2020)

The complete Industry News section from the May 2020 issue of Gear Technology.

46 The All-in-One Application Advantage (May 2020)

A Look at Complex, High-Performance Five-Axis Machining Solutions.

47 Industry News (March/April 2020)

The complete Industry News section from the March/April issue of Gear Technology.

48 The Latest in Broaching (January/February 2020)

From standardization to automated, Industry 4.0 capable broachers, here's the latest in what's being developed in the field of broaching.

49 A Look at Mechanical Principles (November/December 2019)

Photographer/filmmaker Ralph Steiner made poetry out of a simple short film on machine components in the 1930s

50 A Tale of Two Gear Companies (August 2019)

Experiencing a Dickensian dilemma in its essence, a Los Angeles based manufacturing company was faced with the good fortune of ever increasing orders for steel gears from a good customer with a new recreational product in very high demand. Confronting the possibility of an untold number of lonely late nights tending to the whims of a 1950s era manual hobber was an unpalatable prospect no one desired.

51 Industry News (July 2019)

The complete Industry News section from the July 2019 issue of Gear Technology.

52 Industry News (May 2019)

The complete Industry News section from the May 2019 issue of Gear Technology.

53 New Concepts in CNC Gear Shaping (July/August 1995)

In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.

54 Industry News (January/February 2019)

The complete Industry News section from the January/February 2019 issue of Gear Technology.

55 Product News (September/October 2018)

See the latest gear industry products from Marposs, GWJ Technology, Norton|Saint Gobain, Mitutoyo, C&B Machinery, DMG Mori, Gear Motions and LK Metrology.

56 Human Machine Interface (HMI) in Gear Manufacturing (June 2018)

"Documentation is not a Substitute for an Intuitive Interface." The author explores the development of modern controls for a CNC gear grinding machine.

57 Liebherr - Barber Colman Hob Settings (September/October 2015)

I would like some instructions for setting the degrees and minutes on a Liebherr or Barber Colman hob. Our machines use a Vernier scale to match the lead angle of the cutter to the part to form straight teeth. There is a dispute on how to do this task, and I wanted insight from another professional.

58 Industry News (January/February 2018)

Fraunhofer CMI focuses on new U.S. gear and transmission technologies group, plus other news from around the industry.

59 Grinding It Out (January/February 2018)

C & B Machinery Meets Rigorous Demands with Installation of Manufacturing Cell.

60 Industry News (November/December 2017)

Gear Technology hosts dinner for technical contributors to the gear industry during this year's AGMA Fall Technical Meeting and Gear Expo in Columbus, OH. Plus other news from around the industry.

61 Gear Expo 2017 and ASM Heat Treat 2017 Booth Previews (September/October 2017)

The latest technology on display in Columbus, OH. October 24-26.

62 Industry News (August 2017)

Results from the 2017 Powder Metallurgy Design Excellence Awards, plus other news from around the industry.

63 Gear Expo Showstoppers (August 2017)

Special Advertising Section featuring Gear Expo exhibitors.

64 Much Ado About Nothing (July 2017)

For over 50 years, the Do Nothing Machine has entertained the public eye with its complex machinery, a mountain of over 700 gears put together for the express purpose of doing nothing.

65 Anatomy of a Rebuild (June 2017)

Nuttall Gear taps Machine Tool Builders for shop floor upgrades.

66 Industry News (March/April 2017)

Educational initiatives, company news, acquisitions and people in the industry are all featured this issue.

67 Innovating Against the Tide (September/October 2016)

During a year with a strong dollar, tanked oil prices and a number of soft markets that just aren't buying, one might expect spline manufacturers to be experiencing the same tumult everyone else is. But when I got a chance to speak with some of the suppliers to spline manufacturers at IMTS about how business is going, many of the manufacturing industry's recent woes never came up, and instead were replaced by a shrug and an "eh, business is doing pretty well."

68 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

69 CNC Software Savvy (May/June 1995)

Question: When we purchase our first CNC gear hobbing machine, what questions should we ask about the software? What do we need to know to correctly specify the system requirements?

70 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

71 Cutting Low-Pitch-Angle Bevel Gears, Worm Gears and The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

72 Spiral-Bevel Gear Noise: An Approach to Solving In-Field Issues (September/October 2020)

Gear noise is a common evil any gear manufacturer must live with. It is often low enough not to be a major problem but, at times, gear whining may appear and then, tracking the source and, especially, curing the ill can be tricky at best.

73 The Basics of Gear Theory (June 2015)

Beginning with our June Issue, Gear Technology is pleased to present a series of full-length chapters excerpted from Dr. Hermann J. Stadtfeld’s latest scholarly — yet practical — contribution to the gear industry — Gleason Bevel Gear Technology. Released in March, 2014 the book boasts 365 figures intended to add graphic support of a better understanding and easier recollection of the covered material.

74 Non-Involute Gearing, Function and Manufacturing Compared to Established Gear Designs (January/February 2015)

Introduction The standard profile form in cylindrical gears is an involute. Involutes are generated with a trapezoidal rack — the basis for easy and production-stable manufacturing (Fig. 1).

75 First International Involute Gear Comparison (August 2014)

Measurement institutions of seven different countries — China, Germany, Japan, Thailand, Ukraine, United Kingdom and the U.S. — participated in the implementation of the first international comparison of involute gear measurement standards. The German metrology institute Physikalisch-Technische Bundesanstalt (PTB) was chosen as the pilot laboratory as well as the organizer. Three typical involute gear measurement standards provided by the PTB were deployed for this comparison: a profile, a helix and a pitch measurement standard. In the final analysis, of the results obtained from all participants, the weighted mean was evaluated as reference value for all 28 measured parameters. However, besides the measurement standards, the measured parameters, and, most importantly, some of the comparison results from all participants are anonymously presented. Furthermore, mishandling of the measurement standards as occurred during the comparison will be illustrated.

76 The Involute Curve (January/February 2013)

Although gears can be manufactured using a wide variety of profiles, the involute curve is the most commonly used. Here are some of the basics.

77 Measurement of Involute Master (January/February 2013)

Our experts tackle the topic of measuring involute masters, including both master gears and gear inspection artifacts.

78 Solid Model Generation of Involute Cylindrical Gears (September/October 2003)

This paper presents approximate and accurate methods to generate solid models of involute cylindrical gears using Autodesk Inventor 3-D CAD software.

79 Profile Shift in External Parallel Axis Cylindrical Involute Gears (November/December 2001)

Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.

80 The Basics of Gear Metrology and Terminology Part II (November/December 1998)

In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.

81 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

82 Involute Inspection Methods and Interpretation of Inspection Results (July/August 1997)

What is so unique about gear manufacturing and inspection? Machining is mostly associated with making either flat or cylindrical shapes. These shapes can be created by a machine's simple linear or circular movements, but an involute curve is neither a straight line nor a circle. In fact, each point of the involute curve has a different radius and center of curvature. Is it necessary to go beyond simple circular and linear machine movements in order to create an involute curve? One of the unique features of the involute is the fact that it can be generated by linking circular and linear movements. This uniqueness has become fertile soil for many inventions that have simplified gear manufacturing and inspection. As is the case with gear generating machines, the traditional involute inspection machines take advantage of some of the involute properties. Even today, when computers can synchronize axes for creating any curve, taking advantage of involute properties can be very helpful. I t can simplify synchronization of machine movements and reduce the number of variables to monitor.

83 Rebuilding a Metrology Infrastructure (January/February 1996)

The American Society of Mechanical Engineers (ASME) announced at Gear Expo '95 that a national service for the calibration of involute artifacts is now available at the Department of Energy's Y-12 Plant in Oak Ridge, TN.

84 Computerized Hob Inspection & Applications of Inspection Results Part II (July/August 1994)

Flute Index Flute index or spacing is defined as the variation from the desired angle between adjacent or nonadjacent tooth faces measured in a plane of rotation. AGMA defines and provides tolerance for adjacent and nonadjacent flute spacing errors. In addition, DIN and ISO standards provide tolerances for individual flute variation (Fig. 1).

85 Computerized Hob Inspection & Applications of Inspection Results - Part I (May/June 1994)

Can a gear profile generated by the hobbing method be an ideal involute? In strictly theoretical terms - no, but in practicality - yes. A gear profile generated by the hobbing method is an approximation of the involute curve. Let's review a classic example of an approximation.

86 Basic Gear Generation Designing the Teeth (September/October 1991)

The finished gear engineer, the man who is prepared for all emergencies, must first of all know the basic design principles. Next he must be well versed in all sorts of calculations which come under the heading of "involute trigonometry."

87 Product News (May 2009)

The complete Product News section from the May 2009 issue of Gear Technology.

88 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

89 Our Experts Discuss... (March/April 1991)

Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.

90 The Involute Helicoid and The Universal Gear (November/December 1990)

A universal gear is one generated by a common rack on a cylindrical, conical, or planar surface, and whose teeth can be oriented parallel or skewed, centered, or offset, with respect to its axes. Mating gear axes can be parallel or crossed, non-intersecting or intersecting, skewed or parallel, and can have any angular orientation (See Fig.1) The taper gear is a universal gear. It provides unique geometric properties and a range of applications unmatched by any other motion transmission element. (See Fig.2) The taper gear can be produced by any rack-type tool generator or hobbing machine which has a means of tilting the cutter or work axis and/or coordinating simultaneous traverse and infeed motions.

91 Involute Splines (September/October 1990)

Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons: 1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions. 2)Power is usually required to be transmitted along a shaft.

92 Approximating an Involute Tooth Profile (September/October 1990)

On many occasions a reasonably approximate, but not exact, representation of an involute tooth profile is required. Applications include making drawings, especially at enlarged scale, and laser or EDM cutting of gears, molds, and dies used to produce gears. When numerical control (NC) techniques are to be used, a simple way to model an involute can make the NC programming task much easier.

93 Design of Internal Helical Gears (March/April 1989)

In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows: 1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.

94 Spur Gear Fundamentals (January/February 1989)

Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.

95 Involutometry Illustrations (November/December 1988)

In our last issue, the labels on the drawings illustrating "Involutometry" by Harlan Van Gerpan and C. Kent Reece were inadvertently omitted. For your convenience we have reproduced the corrected illustrations here. We regret any inconvenience this may have caused our readers.

96 Involutometry (September/October 1988)

Involute Curve Fundamentals. Over the years many different curves have been considered for the profile of a gear tooth. Today nearly every gear tooth uses as involute profile. The involute curve may be described as the curve generated by the end of a string that is unwrapped from a cylinder. (See Fig. 1) The circumference of the cylinder is called the base circle.

97 Design of Involute Gear Teeth (October/November 1984)

In designing involute gear teeth, it is essential that the fundamental properties of the involute curve be clearly understood. A review of "the Fundamental Laws of the Involute Curve" found in last issue will help in this respect. It has previously been shown that the involute curve has its origin at the base circle. Its length, however, may be anything from zero at the origin or starting point on to infinity. The problem, therefore, in designing gear teeth, is to select that portion of the involute, which will best meet all requirements.

98 Functions of Gearing and Application of the Involute to Gear Teeth (August/September 1984)

Experience has proven that the involute provides the most satisfactory profile for spur and helical gear teeth, and fulfills the requirements for transmitting smooth, uniform angular motion.

99 Variation Analysis of Tooth Engagement and Load Sharing in Involute Splines (June 2010)

Involute spline couplings are used to transmit torque from a shaft to a gear hub or other rotating component. External gear teeth on the shaft engage an equal number of internal teeth in the hub. Because multiple teeth engage simultaneously, they can transmit much larger torques than a simple key and keyway assembly. However, manufacturing variations affect the clearance between each pair of mating teeth, resulting in only partial engagement.

100 Area of Existence of Involute Gears (January/February 2010)

This paper presents a unique approach and methodology to define the limits of selection for gear parameters. The area within those limits is called the “area of existence of involute gears” (Ref. 1). This paper presents the definition and construction of areas of existence of both external and internal gears. The isograms of the constant operating pressure angles, contact ratios and the maximum mesh efficiency (minimum sliding) isograms, as well as the interference isograms and other parameters are defined. An area of existence allows the location of gear pairs with certain characteristics. Its practical purpose is to define the gear pair parameters that satisfy specific performance requirements before detailed design and calculations. An area of existence of gears with asymmetric teeth is also considered.

101 The Kinematics of Conical Involute Gear Hobbing (July 2008)

Conical involute gears, also known as beveloid gears, are generalized involute gears that have the two flanks of the same tooth characterized by different base cylinder radii and different base helix angles.

102 Why do Customers Want to Reinvent OUR Wheel (June 2007)

Over many years of being in the machine tool business, it has been interesting to observe the way we suppliers are forced to quote and sell machine tools to many large companies.

103 Crossroads and Transitions - Part II (July 2009)

The auction has been held. The warehouse is bare. The computers and furniture are being packed, and Cadillac Machinery, the company started by my father in 1950, and of which I was president for more than 25 years, is close to being no more.

104 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

105 ...And from the Industry (October/November 1984)

Industry News from October/November 1984 Gear Technology.

106 Addendum III - The Return (May/June 1995)

Gear Technology's bimonthly aberration - gear trivia, humor, weirdness and oddments for the edification and amusement of our readers. Contributions are welcome.

107 What to Look For Before You Leap (March/April 1995)

Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?

108 The Second Edition... (March/April 1995)

Gearing for Munchkins Gene Kasten, president of Repair Parts, Inc., of Rockford, IL, is the proud owner of a miniature Barber-Colman hobber, the only one of its kind in the world. The machine, a replica of the old B-C "A" machine, was built between 1933 and 1941 by W. W. Dickover, who devoted 2, 640 hours of his spare time to the project.

109 CNC Basics (January/February 1995)

NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.

110 CNC Gear Manufacturing - Where Are We Now (January/February 1995)

These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.

111 Computers and Automation Lead IMTS Innovations (November/December 1994)

Robots, computers and other signs of high technology abounded at IMTS 94, supporting the claim by many that this was one of the best shows ever. Many of the machines on display had so many robotic attachments and computer gizmos that they looked more like they belonged in some science fiction movie than on the floor of a machine shop.

112 Gear Hobbing Without Coolant (November/December 1994)

For environmental and economic reasons, the use of coolant in machining processes is increasingly being questioned. Rising coolant prices and disposal costs, as well as strains on workers and the environment, have fueled the debate. The use of coolant has given rise to a highly technical system for handling coolant in the machine (cooling, filtering) and protecting the environment (filter, oil-mist collector). In this area the latest cutting materials - used with or without coolant - have great potential for making the metal-removal process more economical. The natural progression to completely dry machining has decisive advantages for hobbing.

113 Innovative CNC Gear Shaping (January/February 1994)

The Shaping Process - A Quick Review of the Working Principle. In the shaping process, cutter and workpiece represent a drive with parallel axes rotating in mesh (generating motion) according to the number of teeth in both cutter and workpiece (Fig. 1), while the cutter reciprocates for the metal removal action (cutting motion).

114 The Gear Hobbing Process (January/February 1994)

Gear hobbing is a generating process. The term generating refers to the fact that the gear tooth form cut is not the conjugate form of the cutting tool, the hob. During hobbing both the hob and the workpiece rotate in a continuous rotational relationship. During this rotation, the hob is typically fed axially with all the teeth being gradually formed as the tool traverses the work face (see Fig. 1a).

115 Grinding Bevel Gears on Cylindrical Gear Grinding Machines (January/February 1994)

Power train designs which employ gears with cone angles of approximately 2 degrees to 5 degrees have become quite common. It is difficult, if not impossible, to grind these gears on conventional bevel gear grinding machines. Cylindrical gear grinding machines are better suited for this task. This article will provide an overview of this option and briefly introduce four grinding variation possibilities.

116 CNC Bevel Gear Generators and Flared Cup Gear Grinding (July/August 1993)

New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.

117 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

118 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

119 SPC Acceptance of Hobbing & Shaping Machines (September/October 1991)

Today, as part of filling a typical gear hobbing or shaping machine order, engineers are required to perform an SPC acceptance test. This SPC test, while it is contractually necessary for machine acceptance, is not a machine acceptance test. It is a process capability test. It is an acceptance of the machine, cutting tool, workholding fixture, and workpiece as integrated on the cutting machine, using a gear measuring machine, with its work arbor and evaluation software, to measure the acceptance elements of the workpiece.

120 Sicmat Releases Raso 200 Dynamic Shaving Machine (November/December 2011)

The Raso 200 Dynamic has been developed to offer all the characteristics of a gear shaving machine with a competitive price.

121 Application of Statistical Stability and Capability for Gear Cutting Machine Acceptance Criteria (November/December 2003)

Machine tool manufacturers supplying machines to the gearing world have been in existence for many years. The machines have changed, and so has the acceptance criteria for the machines.

122 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

123 Reinvesting in New Equipment Pays Dividends (November/December 2007)

Recently, I was approached by a colleague who is a manufacturer outside the gear industry...

124 HMC Lassos World's Largest Gear Grinder (June 2008)

Hofler Rapid 6000 Makes North American Debut at Highway Machine Company.

125 All-in-One Broaching Capability (January/February 2010)

Faster, more efficient manufacturing offered with table-top design from American Broach & Machine.

126 Producing Profile and Lead Modifications in Threaded Wheel and Profile Grinding (January/February 2010)

Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.

127 New Developments in Gear Hobbing (March/April 2010)

Several innovations have been introduced to the gear manufacturing industry in recent years. In the case of gear hobbing—the dry cutting technology and the ability to do it with powder-metallurgical HSS—might be two of the most impressive ones. And the technology is still moving forward. The aim of this article is to present recent developments in the field of gear hobbing in conjunction with the latest improvements regarding tool materials, process technology and process integration.

128 The Road Leads Straight to Hypoflex (March/April 2010)

A new method for cutting straight bevel gears.

129 Gear Finishing by Shaving, Rolling and Honing, Part II (May/June 1992)

Part I of this series focused on gear shaving, while Part II focuses on gear finishing by rolling and honing.

130 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

131 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

132 Grinding, Finishing and Software Upgrades Abound (March/April 2011)

Machine tool companies are expanding capabilities to better accommodate the changing face of manufacturing. Customers want smaller-sized equipment to take up less valuable floor space, multifunctional machines that can handle a variety of operations and easy set-up changes that offer simplified operation and maintenance.

133 Gear Hobbing Technology Update (June/July 2011)

Q&A with Liebherr's Dr. Alois Mundt.

134 State-of-the-Art Broaching (August 2011)

There are a number of companies working to change the way broaching is perceived, and over the past 10 years, they’ve incorporated significant technological changes to make the process more flexible, productive and accurate.

135 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

136 EMO Hannover - More than Machine Tools (October 2011)

Some gear-related highlights from the recent EMO show in Hannover, Germany.

137 Checking Up on Your Heat Treater (July 2016)

What quality and performance characteristics should you look for?