Weight Savings - Search Results

Articles About Weight Savings


Articles are sorted by RELEVANCE. Sort by Date.

1 Evaluation of Carburized & Ground Face Gears (September/October 2000)

Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).

2 Effect of Web & Flange Thickness on Nonmetallic Gear Performance (November/December 1995)

Gears are manufactured with thin rims for several reasons. Steel gears are manufactured with thin rims and webs where low weight is important. Nonmetallic gears, manufactured by injection molding, are designed with thin rims as part of the general design rule to maintain uniform thickness to ensure even post-mold cooling. When a thin-rimmed gear fails, the fracture is thought the root of the gear, as shown in Fig. 1a, rather than the usual fillet failure shown in Fig. 1b.

3 Multi-Metal Composite Gear-Shaft Technology (January/February 1995)

A research program, conducted in conjunction with a U.S. Army contract, has resulted in the development of manufacturing technology to produce a multi-metal composite gear/shaft representing a substantial weight savings compared to a solid steel component. Inertia welding is used to join a steel outer ring to a light-weight titanium alloy web and/or shaft through the use of a suitable interlayer material such as aluminum.