automobile - Search Results

Articles About automobile


Articles are sorted by RELEVANCE. Sort by Date.

1 Trends in Automobile Transmissions (July/August 2006)

With all the work in transmission development these days, the demand for automobile transmission gears should remain strong for several years, but suppliers will have to be as flexible as possible to keep up with the changes.

2 What Was He Thinking (August 2016)

Having read about an automobile race in France, Kohlsaat decided he'd host America's first auto race in Chicago. The year was 1895 and automobiles were still a great curiosity. Kohlsaat, owner/publisher of the Chicago Times Herald, planned to exploit the growing interest in motoring by sponsoring a 54-mile race from downtown Chicago to nearby suburb Evanston, Illinois, and back. The match was open to all comers, foreign or domestic, whether powered by gas, electricity, or steam. The top prize: $2,000 (that's 50,000 2016 dollars).

3 The Winds of Change (January/February 1991)

Nashville - One of the highlights of this year's SME Advanced Gear Processing and Manufacturing Clinic was a tour of the new GM Saturn automobile manufacturing plant outside the city. There in the Tennessee hills is a hopeful vision of the future of the American automobile industry. It may well be the future of American large-scale manufacturing in general.

4 New Transmissions Drive Automotive Gear Industry (July/August 2006)

News from the major automakers and transmission suppliers.

5 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

6 The Chevy Corvair (June/July 2011)

Relic of an era when quality was an afterthought.

7 Racing Circuits (May/June 1996)

Zero to 125 MPH in five seconds. Maximum speed of 211 MPH. Seven-second pit stops. Formula One racing is a high-adrenalin sport - one which demands peak performance from drivers and machines alike.

8 Setting a Hundred-Year Standard (June 2018)

Remembering Panhard and Levassor, the company that invented the first manual transmission.

9 The Effect of Reverse Hobbing at a High Speed (March/April 1987)

Today it is common practice when climb hobbing to keep the direction of the hob thread the same as that of the helical gear. The same generalization holds true for the mass production of gears for automobiles. It is the authors' opinion, however, that conventional hobbing with a reverse-handed hob is more effective for the high-speed manufacture of comparatively small module gears for automobiles. The authors have proven both experimentally and theoretically that reverse-handed conventional hobbing, using a multi-thread hob with a smaller diameter is very effective for lengthening the life of the hob and for increasing cutting efficiency at high speeds.

10 Suitability of High Density Powder Metal Gears for Gear Applications (January/February 2001)

The implementation of powder metal (PM)components in automotive applications increases continuously, in particular for more highly loaded gear components like synchromesh mechanisms. Porosity and frequently inadequate material properties of PM materials currently rule out PM for automobile gears that are subject to high loads. By increasing the density of the sintered gears, the mechanical properties are improved. New and optimized materials designed to allow the production of high-density PM gears by single sintering may change the situation in the future.

11 What's New and Noteworthy in Powder Metal (September/October 2017)

First, the facts: powder metallurgy is a cost-effective method of forming precision net-shape metal components that allows for more efficiently designed products. It saves valuable raw materials through recycling and the elimination of costly secondary-machining. PM competes with wrought steel gears as the technology continues to advance. You'll find PM components in everything from automobile transmissions to aircraft turbine engines, surgical equipment and power tools.

12 Vive la Differential (March/April 2017)

Your automobile's differential is easily one of its most important components. This becomes crystal clear to anyone that has ever had to pony up to replace one. The differential, that mathy-driven, mechanically complex system that keeps axles and pinions running smoothly was invented by a watchmaker - for a watch.

13 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

14 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

15 The Beginner's Guide to Powder Metal Gears (September/October 1995)

Increasingly gear designers and product engineers are capitalizing on the economic advantages of powder metallurgy (P/M) for new and existing gear applications. Powder metal gears are found in automobiles, outdoor power equipment transmissions and office machinery applications as well as power hand tools, appliances and medial components.

16 The Right and Wrong of Modern Hob Sharpening (January/February 1992)

Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.

17 High Speed Hobbing of Gears With Shifted Profiles (July/August 1988)

The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.

18 At the PEEK of the Polymer Food Chain (June 2010)

In the hypercompetitive race to increase automobile efficiency, Metaldyne has been developing its balance shaft module line with Victrex PEEK polymer in place of metal gears. The collaborative product development resulted in significant reductions in inertia, weight and power consumption, as well as improvement in noise, vibration and harshness (NVH) performance.

19 High Performance Gears Using Powder Metallurgy (PM) Technology (November/December 2004)

Powder metallurgy (P/M) techniques have proven successful in displacing many components within the automobile drive train, such as: connecting rods, carriers, main bearing caps, etc. The reason for P/M’s success is its ability to offer the design engineer the required mechanical properties with reduced component cost.

20 The Road to Reliability (May 2018)

Gear Industry Steps Up to Automation Challenges in Auto Industry. Automotive parts are always moving. They are zipping across conveyors, smashing into each other in bins and traveling across the production chain before ending up inside an automobile. For gears, this can be a somewhat precarious situation as they tend to run best when they're free from nicks, abrasions, cracks or other damages.