carburized - Search Results

Articles About carburized

Articles are sorted by RELEVANCE. Sort by Date.

1 In-Situ Measurement of Stresses in Carburized Gears via Neutron Diffraction (May 2009)

This paper presents the results of research directed at measuring the total stress in a pair of statically loaded and carburized spur gears. Measurements were made to examine the change in total stress as a function of externally applied load and depth below the surface.

2 The Effect of Metallurgy on the Performance of Carburized Gears (March/April 1996)

Gears are designed to be manufactured, processed and used without failure throughout the design life of the gear. One of INFAC's objectives (*see p.24) is to help manufacture of gears to optimize performance and life. One way to achieve this is to identify failure mechanisms and then devise strategies to overcome them by modifying the manufacturing parameters.

3 Characterizaton of Retained Austenite in Case Carburized Gears and Its Influence on Fatigue Performance (May/June 2003)

Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.

4 Minimizing Gear Distortion During Heat Treating (March/April 1996)

Graded hardening technology has proven over the years to yield very good results when used in the heat treating of carburized gears. It is especially advantageous for smaller companies, subject to higher competitive pressures. Unfortunately, despite the fact that graded hardening is a very well-known method, its use has been limited. We strongly recommend this technology to all of those who need to produce gears with high metallurgical quality.

5 Case Depth and Load Capacity of Case-Carburized Gears (March/April 2002)

Compared to non-heat-treated components, case-carburized gears are characterized by a modified strength profile in the case-hardened layer. The design of case-carburized gears is based on defined allowable stress numbers. These allowable stress numbers are valid only for a defined "optimum" case depth. Adequate heat treatment and optimum case depth guarantee maximum strength of tooth flank and tooth root.

6 Predicting the Heat-Treat Response of a Carburized Helical Gear (November/December 2002)

Using the DANTE software, a finite element simulation was developed and executed to study the response of a carburized 5120 steel helical gear to quenching in molten salt. The computer simulation included heat-up, carburization, transfer and immersion in a molten salt bath, quenching, and air cooling. The results of the simulation included carbon distribution of phases, dimensional change, hardness, and residual stress throughout the process. The predicted results were compared against measured results for hardness, dimensions and residual stress. The excellent agreement between predictions and measured values for this carburized 5120 steel gear provides a basis for assessing the various process parameters and their respective importance in the characteristics of not only these heat-treated parts, but of other compositions and shapes.

7 Geoffrey Parrish, Carburizing: Microstructures and Properties, 2nd ed., ASM, 1999, 247 pages. (May/June 2000)

Geoffrey Parrish has updated and expanded his previous book: The Influence of Microstructure on the Properties of Case-Carburized Components. It now contains at least twice the material. References and bibliography include 449 citations.

8 Grinding Induced Changes in Residual Stresses of Carburized Gears (March/April 2009)

This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.

9 The Calculation of Optimum Surface Carbon Content for Carburized Case Hardened Gears (March/April 2001)

For high-quality carburized, case hardened gears, close case carbon control is essential. While tight carbon control is possible, vies on what optimum carbon level to target can be wider than the tolerance.

10 Metallurgical Investigation of Tiger Stripes on a Carburized High Speed Pinion (May 2014)

Tiger stripes on a high-speed pinion made of a carburized SAE 9310 steel were investigated. The morphology of the damage was typical of electric discharge damage. The cause of the stripes and potential damage to the gear tooth were analyzed and are presented in this report.

11 Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence on Material, Design and Manufacturing Parameters (November/December 2009)

A single tooth bending (STB) test procedure has been developed to optimally map gear design parameters. Also, a test program on case-carburized, aerospace standard gears has been conceived and performed in order to appreciate the influence of various technological parameters on fatigue resistance and to draw the curve shape up to the gigacycle region.

12 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

13 Effect of Shot Peening on Surface Fatigue Life of Carburized and Hardened AISI 1910 Spur Gears (January/February 1986)

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

14 Evaluation of Carburized & Ground Face Gears (September/October 2000)

Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).

15 Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel (March/April 2008)

This study quantified the performance of a new alloy and has provided guidance for the design and development of next-generation gear steels.

16 Performance of Skiving Hobs in Finishing Induction Hardened and Carburized Gears (May/June 2003)

In order to increase the load carrying capacity of hardened gears, the distortion of gear teeth caused by quenching must be removed by precision cutting (skiving) and/or grinding. In the case of large gears with large modules, skiving by a carbide hob is more economical than grinding when the highest accuracy is not required.

17 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.

18 Evaluation of Bending Strength of Carburized Gears (May/June 2004)

The aim of our research is to clearly show the influence of defects on the bending fatigue strength of gear teeth. Carburized gears have many types of defects, such as non-martensitic layers, inclusions, tool marks, etc. It is well known that high strength gear teeth break from defects in their materials, so it’s important to know which defect limits the strength of a gear.

19 Influence of Lubrication on Pitting and Micropitting Resistance of Gears (March/April 1990)

Pitting and micropitting resistance of case-carburized gears depends on lubricants and lubrication conditions. Pitting is a form of fatigue damage. On this account a short time test was developed. The test procedure is described. The "pitting test" was developed as a short time test to examine the influence of lubricants on micropitting. Test results showing the influence of case-carburized gears on pitting and micropitting are presented.

20 The Effects of Surface Hardening on the Total Gear Manufacturing System (January/February 1991)

Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.

21 Metallurgical Aspects to be Considered in Gear and Shaft Design (March/April 1999)

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

22 How to Carburize a Finished Gear (March/April 1995)

Precise heat treatment plays an essential role in the production of quality carburized gears. Seemingly minor changes in the heat treating process can have significant effects on the quality, expense and production time of a gear, as we will demonstrate using a case study from one of our customer's gears.

23 Controlling Carburizing for Top Quality Gears (March/April 1993)

A carburized alloy steel gear has the greatest load-carrying capacity, but only if it is heat treated properly. For high quality carburizing, the case depth, case microstructure, and case hardness must be controlled carefully.

24 Longitudinal Tooth Contact Pattern Shift (May 2012)

After a period of operation, high-speed turbo gears may exhibit a change in longitudinal tooth contact pattern, reducing full face width contact and thereby increasing risk of tooth distress due to the decreased loaded area of the teeth. But this can be tricky—the phenomenon may or may not occur. Or, in some units the shift is more severe than others, with documented cases in which shifting occurred after as little as 16,000 hours of operation. In other cases, there is no evidence of any change for units in operation for more than 170,000 hours. This condition exists primarily in helical gears. All recorded observations here have been with case-carburized and ground gear sets. This presentation describes phenomena observed in a limited sampling of the countless high-speed gear units in field operation. While the authors found no existing literature describing this behavior, further investigation suggests a possible cause. Left unchecked and without corrective action, this occurrence may result in tooth breakage.

25 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.

26 Factors Influencing Fracture Toughness of High-Carbon Martensitic Steels (January/February 1989)

Plane strain fracture toughness of twelve high-carbon steels has been evaluated to study the influence of alloying elements, carbon content and retained austenite. The steels were especially designed to simulate the carburized case microstructure of commonly used automotive type gear steels. Results show that a small variation in carbon can influence the K IC significantly. The beneficial effect of retained austenite depends both on its amount and distribution. The alloy effect, particularly nickel, becomes significant only after the alloy content exceeds a minimum amount. Small amounts of boron also appear beneficial.

27 The Anatomy of a Micropitting-Induced Tooth Fracture Failure (June 2010)

Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause much perturbation in the overall operation of a gear system, the ultimate consequences of a micropitting failure can, and frequently are, much more catastrophic.

28 Tolerance for Overload Stress (March/April 1985)

The performance of carburized components can be improved simply by changing the alloy content of the steel.

29 The Pros and Cons of Fully Ground Root Fillets (August 2014)

For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?

30 Carburizing of Big Module and Large Diameter Gears (September/October 2002)

Carburized gears have higher strengths and longer lives compared with induction-hardened or quench-tempered gears. But in big module gears, carburizing heat-treatment becomes time-consuming and expensive and sometimes cannot achieve good hardness due to the big mass-effect. Also, it is not easy to reduce distortion of gears during heat treatment.