corrections - Search Results

Articles About corrections


Gear Grinding with Closed Loop: The Next Level

Gleason Genesis® GX Series Threaded Wheel Grinding Machines take high-volume, high-quality gear finishing to a new level, with features like single-tool setup, twist-controlled grinding and integrated automation. Our Closed Loop System networks a Gleason GMS inspection machine directly to the GX for fast, reliable, automatic data transfer and corrections. Article Courtesy of Gleason Corporation
Read More

Articles are sorted by RELEVANCE. Sort by Date.

1 Calculation of Optimum Tooth Flank Corrections for Helical Gears (September/October 1988)

The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.

2 Tooth Flank Corrections of Wide Face Width Helical Gears that Account for Shaft Deflections (January/February 2005)

This paper discusses the influence of tip relief, root relief, load modification, end relief and their combinations on gear stresses and transmission errors due to shaft deflections.

3 Producing Profile and Lead Modifications in Threaded Wheel and Profile Grinding (January/February 2010)

Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.

4 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

5 Viewpoint (November/December 1991)

Dear Editor: In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.

6 Viewpoint (March/April 1986)

I received a letter from Mr. G. W. Richmond, Sullivan Machinery Company, N.H., in which in addition to correcting mistyping, he made several suggestions concerning my article "General Equations for Gear Cutting Tool Calculations."

7 What "Ease-Off" shows about Bevel and Hypoid Gears (September/October 2001)

The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.

8 Topological Gearing Modifications: Optimization of Complex Systems Capable of Oscillation (May 2014)

Vibration and noise from wind turbines can be significantly influenced - and therefore reduced - by selecting suitable gearing modifications. New options provided by manufacturers of machine tools and grinding machines, and especially state-of-the-art machines and controls, provide combined gearing modifications - or topological gearing corrections - that can now be reliably machined. Theoretical investigations of topological modifications are discussed here with the actual machining and their possible use.

9 The Design and Testing of a Low Noise Marine Gear (May/June 2000)

This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.

10 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

11 Rotary Gear Honing (May/June 1987)

Rotary gear honing is a hard gear finishing process that was developed to improve the sound characteristics of hardened gears by: Removing nicks and burrs; improving surface finish; and making minor corrections in tooth irregularities caused by heat-treat distortion.

12 Crowned Spur Gears: Optimal Geometry and Generation (September/October 1988)

Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)

13 Gear Inspection and Measurement (July/August 1992)

The purpose of gear inspection is to: Assure required accuracy and quality, Lower overall cost of manufacture by controlling rejects and scrap, Control machines and machining practices and maintain produced accuracy as machines and tools wear, Determine hear treat distortions to make necessary corrections.

News Items About corrections

1 KISSsoft Offers Optimization of Profile Corrections (January 12, 2012)
An important step in terms of noise and strength optimization of a gear pair is the optimal design of the micro-geometry.Thereby a combin... Read News