crown - Search Results

Articles About crown


Articles are sorted by RELEVANCE. Sort by Date.

1 Crowned Spur Gears: Optimal Geometry and Generation (September/October 1988)

Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)

2 Crowning Techniques in Aerospace Actuation Gearing (August 2010)

One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples in aerospace actuation systems.

3 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

4 Leading the Way in Lead Crown Correction and Inspection (August 2013)

Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…

5 What "Ease-Off" shows about Bevel and Hypoid Gears (September/October 2001)

The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.

6 Our Experts Discuss Hobbing Ridges, Crooked Gear Teeth, and Crown Shaving (March/April 1992)

Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?

7 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

8 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

9 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).

10 Crowning: A Cheap Fix for Noise and Misalignment Problems (March/April 2010)

Fred Young, CEO of Forest City Gear, talks about sophisticated gear manufacturing methods and how they can help solve common gear-related problems.

11 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

12 Tooth Root Stresses of Spiral Bevel Gears (May/June 1988)

Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.

13 Determining Spline Misalignment Capabilities (November/December 1995)

Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.

14 Cylkro Gears: An Alternative in Mechanical Power Transmission (May/June 1996)

Bevel gears have been the standard for several decades in situations where power transmission has to occur between shafts mounted at a given angle. Now a new approach has been developed that challenges the bevel gear's de facto monopoly in such applications. The concept is based on the principle of the crown gear; i.e., a cylindrical pinion mates with a face gear. Crown Gear B.V. in Enschede, Holland, is the developer of these specialty gear teeth, which are marketed under the trade name Cylkro.

15 Cylkro Face Gears (November/December 2010)

Dutch design and Swiss ingenuity cause transmission breakthrough. Updated examples of Cylkro face gears in action.

16 Longitudinal Load Distribution Factor for Straddle- and Overhang-Mounted Spur Gears (July/August 1987)

A pair of spur gears generally has an effective lead error which is caused, not only by manufacturing and assembling errors, but also by the deformations of shafts, bearings and housings due to the transmitted load. The longitudinal load distribution on a contact line of the teeth of the gears is not uniform because of the effective lead error.

17 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

18 Development of Usable Bevel Gearset with Length and Profile Crowning (November/December 2015)

In the previous sections, the development of conjugate bevel gearsets via hand calculations was demonstrated. The goal of this exercise was to encourage the reader to gain a basic understanding of the theory of bevel gears. This knowledge will help gear engineers to better judge bevel gear design and their manufacturing methods. In order to make the basis of this learning experience even more realistic, this chapter will convert a conjugate bevel gearset into a gearset that is suitable in a real-world application. Length and profile crowning will be applied to the conjugate flank surfaces. Just as in the previous chapter, all computations are demonstrated as manual hand calculations. This also shows that bevel gear theory is not as complicated as commonly assumed.

19 Finish Hobbing Crowned Helical Gears without Twist (January/February 2006)

New tool from LMT-Fette provides combination of operations.

20 Determining Lead Error on a Crowned Pinion (July/August 2000)

Q&A is your interactive gear forum.

21 The Jewels In the (Gear) Crown (January/February 1998)

Over the years the Addendum Staff has brought you odd, little known and sometimes useless facts about almost every conceivable topic concerning gears. This month, as part of our never-ending campaign to upgrade the tone of the industry, we are venturing into the world of high fashion. Lose those pocket protectors, gear fans. Welcome to the land of gear haute couture. Appearing now, in select magazines, are ads that rival those of Bulgari, Cartier and Tiffany. These gear "gems" come courtesy of Winzeler Gear, Chicago, IL.

22 Wear Investigation of Finish Rolled Powder Metal Gears (September/October 2017)

When manufacturing powder metal (PM) gears lead crowning is not achievable in the compaction process. This has to be accomplished either by shaving, grinding or honing. Each of these processes has their merits and draw backs. When employing rolling using a roll burnishing machine lead crowning can be accomplished but due to errors in profile a hard finishing operation such as grinding is used by the industry. In this paper a helical PM gear that has sufficient tolerance class after rolling has been tested in a test rig for durability and the wear has been studied.

23 The Process of Gear Shaving (January/February 1986)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase the gear's load carrying capacity, its factor of safety and its service life.

24 Hard Gear Finishing (March/April 1988)

Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

25 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

26 Technology Tidbits (January/February 2002)

New Technique for Forging Crowned Helical Gears Createch Co. Ltd., a forging die manufacturer from Shizuoka, Japan, has developed a net-shape cold-forging process for forming helical gears and splines with crowned teeth.

27 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

28 Load Distribution Analysis of Spline Joints (May 2014)

A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.

29 The Importance of Profile Shift, Root Angle Correction and Cutter Head Tilt (January/February 2016)

Chapter 2, Continued In the previous sections, development of conjugate, face milled as well as face hobbed bevel gearsets - including the application of profile and length crowning - was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. - how it is applied to bevel and hypoid gears and then expands on profile side shift, and the frequently used root angle correction which - from its gear theoretical understanding - is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following chapters, some of which also will be covered in this series.