cutting tool inspection - Search Results

Articles About cutting tool inspection


Articles are sorted by RELEVANCE. Sort by Date.

1 Method for High Accuracy Cutting Blade Inspection (June 2019)

Inspection of the cutting blades is an important step in the bevel gear manufacture. The proper blade geometry ensures that the desired gear tooth form can be achieved. The accuracy of the process can be compromised when the blade profile consists of several small sections such as protuberance, main profile, top relief and edge radius. Another common obstacle - are outliers which can be caused by dust particles, surface roughness and also floor vibrations during the data acquisition. This paper proposes the methods to improve the robustness of the inspection process in such cases.

2 IMTS 2012 Product Preview (September 2012)

Previews of manufacturing technology related to gears that will be on display at IMTS 2012.

3 Our Experts Discuss... (March/April 1991)

Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.

4 Cutting Tools Now (May/June 1996)

The cutting tool is basic to gear manufacturing. Whether it's a hob, broach, shaper cutter or EDM wire, not much gets done without it. And the mission of the tool remains the same as always; removing material as quickly, accurately and cost-effectively as possible. Progress in the field tends to be evolutionary, coming gradually over time, but recently, a confluence of emerging technologies and new customer demands has caused significant changes in the machines, the materials and the coatings that make cutting tools.

5 Design Implications for Shaper Cutters (July/August 1996)

A gear shaper cutter is actually a gear with relieved cutting edges and increased addendum for providing clearance in the root of the gear being cut. The maximum outside diameter of such a cutter is limited to the diameter at which the teeth become pointed. The minimum diameter occurs when the outside diameter of the cutter and the base circle are the same. Those theoretical extremes, coupled with the side clearance, which is normally 2 degrees for coarse pitch cutters an d1.5 degrees for cutters approximately 24-pitch and finer, will determine the theoretical face width of a cutter.

6 Hard Coatings on Contaminated Surfaces - A Case Study (January/February 1997)

Physical Vapor Deposited (PVD) coatings such as TiN (Titanium nitride) have been a boon for cutting tool manufacturers. They reduce wear and, therefore, extend tool life, which in turn reduces production costs. But PVD coatings are expensive, and when they fail, they cost both time and money, and they causes of the failure are not always readily apparent.

7 Improved Ion Bond Recoating for the Gear Manufacturing Industry (January/February 1997)

This article summarizes the development of an improved titanium nitride (TiN) recoating process, which has, when compared to conventional recoat methods, demonstrated tool life increases of up to three times in performance testing of hobs and shaper cutters. This new coating process, called Super TiN, surpasses the performance of standard TiN recoating for machining gear components. Super TiN incorporates stripping, surface preparation, smooth coating techniques and polishing before and after recoating. The combination of these improvements to the recoating process is the key to its performance.

8 Hobs & Form Relived Cutters: Common Sharpening Problems (May/June 1998)

Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.

9 Cutting Tools Roundup (May/June 1999)

The cutting tool industry has undergone some serious changes in the last couple of years in both technology and the way the industry does business. The emerging technology today, as well as for the foreseeable future, is dry cutting, especially in high volume production settings. Wet cutting continues to be as popular as ever with lubrication advances making it more economical and environmentally friendly. There has also developed a process called "near dry cutting." this process offers many of the benefits of fluids while eliminating many of hte associated problems.

10 Ferritic Nitrocarburizing Gears to Increase Wear Resistance and Reduce Distortion (March/April 2000)

Quality gear manufacturing depends on controlled tolerances and geometry. As a result, ferritic nitrocarburizing has become the heat treat process of choice for many gear manufacturers. The primary reasons for this are: 1. The process is performed at low temperatures, i.e. less than critical. 2. the quench methods increase fatigue strength by up to 125% without distorting. Ferritic nitrocarburizing is used in place of carburizing with conventional and induction hardening. 3. It establishes gradient base hardnesses, i.e. eliminates eggshell on TiN, TiAIN, CrC, etc. In addition, the process can also be applied to hobs, broaches, drills, and other cutting tools.

11 Material Properties and Performance Considerations for High-Speed Steel Gear-Cutting Tools (July/August 2001)

Users of gear-cutting tools probably do not often consciously consider the raw material from which those hobs, broaches or shavers are made. However, a rudimentary awareness of the various grades and their properties may allow tool users to improve the performance or life of their tools, or to address tool failures. The high-speed steel from which the tool is made certainly is not the only factor affecting tool performance, but as the raw material, the steel may be the first place to start.

12 Performance of Skiving Hobs in Finishing Induction Hardened and Carburized Gears (May/June 2003)

In order to increase the load carrying capacity of hardened gears, the distortion of gear teeth caused by quenching must be removed by precision cutting (skiving) and/or grinding. In the case of large gears with large modules, skiving by a carbide hob is more economical than grinding when the highest accuracy is not required.

13 The Two-Sided-Ground Bevel Cutting Tool (May/June 2003)

In the past, the blades of universal face hobbing cutters had to be resharpened on three faces. Those three faces formed the active part of the blade. In face hobbing, the effective cutting direction changes dramatically with respect to the shank of the blade. Depending on the individual ratio, it was found that optimal conditions for the chip removal action (side rake, side relief and hook angle) could just be established by adjusting all major parameters independently. This, in turn, results automatically in the need for the grinding or resharpening of the front face and the two relief surfaces in order to control side rake, hook angle and the relief and the relief angles of the cutting and clearance side.

14 IMTS 2012 Product Preview (August 2012)

Booth previews from exhibitors showing products and services for the gear industry.

15 Progress in Gear Milling (January/February 2013)

Sandvik presents the latest in gear milling technologies.

16 Hotter, Faster, Harder Cutting (July/August 1995)

What Is Whisker-Reinforced Ceramic? Whisker-reinforced ceramic as applied to cutting tool inserts comprises a matrix of aluminum oxide into which approximately 50% by volume of high-purity silicon carbide "whiskers" are randomly dispersed. The "whiskers" are, in fact, single crystals having dimensions of approximately 0.6 microns in diameter x 10-80 microns in length. These "whiskers" have a tensile strength on the order of 1,000,000 psi (690 MPa). The composite material that is the best known and most widely applied using this technology is designated WG-300 and manufactured by the Greenleaf Corporation of Saegertown, PA.

17 Heavy-Duty Demands - Modern Coating Technology Examined (May 2013)

The hob is a perfect example of how a little manufacturing ingenuity can make a reliable, highly productive cutting tool. It's an engineering specimen that creates higher cutting speeds, better wear resistance and increases rigidity. The cutting tool alone, however, can't take all the credit for its resourcefulness. Advanced coating technology from companies like Sulzer, Oerlikon Balzers, Ionbond, Seco Tools and Cemecon helps improve cutting tools by reducing overall costs, increasing tool life and maintaining the highest levels of productivity. The following is a quick recap of new technologies and the latest information in the coating market.

18 Reinventing Cutting Tool Production at Gleason (May 2013)

Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.

19 The Influence of Tool Tolerances on the Gear Quality of a Gear Manufactured by an Indexable Insert Hob (July 2014)

Recently, a new type of hob with carbide inserts has been introduced, providing higher cutting speeds, longer tool life and higher feed rates when compared to re-grindable, high-speed steel hobs. But with this kind of hob, new challenges occur due to positional errors of the cutting edges when mounted on the tool. These errors lead to manufacturing errors on the gear teeth which must be controlled. In this paper, the tooth quality of a gear manufactured by hobs with different quality classes is analyzed using a simulation model in combination with Monte Carlo methods.

20 Industry News (November/December 2014)

The complete Industry News section from the November/December 2014 issue.

21 New Potentials in Carbide Hobbing (January/February 2004)

To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.

22 Gear Tooth Surface Roughness of Helical Gears Manufactured by a Form Milling Cutter (September/October 2015)

Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some special cases, such as small scale production and, the obvious, manufacture of internal gears. To manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the geometry of the form wheel is determined through inverse calculation. A mathematical model is presented where it is possible to determine the machined gear tooth surface in three dimensions, manufactured by this tool, taking the finite number of cutting edges into account. The model is validated by comparing calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.

23 Industry News (January/February 2017)

News from around the Gear Industry

24 Upgrading Your Toolbox (May 2017)

Manufacturers focus on tool design, materials, coating, machine tool options and cutting parameters.

25 Three-Face Blade Technology (November/December 2017)

The author compares the standard two-face blade technology with the three-face blade technology for manufacturing bevel gears.

26 More Solutions, Greater Challenges (May 2018)

As coating technology improves to handle harsher conditions, cutting tool manufacturers are faced with new challenges during the resharpening process.

27 Industry News (January/February 2019)

The complete Industry News section from the January/February 2019 issue of Gear Technology.

28 Cutting Tool Dynamics (May 2019)

Meeting Today’s Requirements for High-Quality Gears

29 New Concepts in CNC Gear Shaping (July/August 1995)

In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.

30 Super Skiving Cutter (August 2019)

Mitsubishi Heavy Industries, Ltd. (MHI) conducted a comparison test between the super skiving cutter and the pinion skiving cutter used in the conventional skiving process and the test results are reported here.

31 High Technology Hobs (January/February 1993)

Today's high technology hobs are visible different from their predecessors. Gear hobs have taken on a different appearance and function with present day technology and tool and material development. This article shows the newer products being offered today and the reasons for investigating their potential for use in today's modern gear hobbers, where cost reduction and higher productivity are wanted.

32 Big Gears Better and Faster (January/February 2011)

Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.

33 Tool Life and Productivity Improvement Through Cutting Parameter Setting and Tool Design in Dry High-Speed Bevel Gear Tooth Cutting (May/June 2006)

This article presents some of the findings of cutting investigations at WZL in which the correlation of cutting parameters, cutting materials, tool geometry and tool life have been determined.

34 Advantages of Titanium Nitride Coated Gear Tools (May/June 1984)

A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing coated tools are considered in terms of both tool cost and machining cost.

35 Gear Generating Using Rack Cutters (October/November 1984)

Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.

36 The New Freedoms: Bevel Blades (September/October 2007)

Today, because of reduced cost of coatings and quicker turnaround times, the idea of all-around coating on three-face-sharpened blades is again economically viable, allowing manufacturers greater freedoms in cutting blade parameters, including three-face-sharpened and even four-face-sharpened blades.

37 Hard Gear Processing with Skiving Hobs (March/April 1985)

As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.

38 Tooth Forms for Hobs (March/April 1985)

The gear hobbing process is a generating type of production operation. For this reason, the form of the hob tooth is always different from the form of the tooth that it produces.

39 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

40 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

41 Full Speed Ahead (May 2012)

Indexable carbide insert (ICI) cutting tools continue to play a pivotal role in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.

42 Shaper Cutters - Design & Application - Part 2 (May/June 1990)

Cutter Sharpening Cutter sharpening is very important both during manufacturing and subsequently in resharpening after dulling. Not only does this process affect cutter "over cutting edge" quality and the quality of the part cut, but it can also affect the manner in which chip flow takes place on the cutter face if the surface finished is too rough or rippled.

43 Hob Length Effects (September/October 1985)

Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it a logical choice for a wide range of sizes.

44 General Equations for Gear Cutting Tool Calculations (November/December 1985)

The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a good understanding of profile calculations is very important.

45 Hob Tool Life Technology Update (March/April 2009)

The method of cutting teeth on a cylindrical gear by the hobbing process has been in existence since the late 1800s. Advances have been made over the years in both the machines and the cutting tools used in the process. This paper will examine hob tool life and the many variables that affect it. The paper will cover the state-of-the-art cutting tool materials and coatings, hob tool design characteristics, process speeds and feeds, hob shifting strategies, wear characteristics, etc. The paper will also discuss the use of a common denominator method for evaluating hob tool life in terms of meters (or inches) per hob tooth as an alternative to tool life expressed in parts per sharpening.

46 Viewpoint (November/December 1991)

Dear Editor: In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.

47 M & M Precision, Penn State & NIST Team Up For Gear Metrology Research (July/August 1997)

In 1993, M & M Precision Systems was awarded a three-year, partial grant from the Advanced Technology Program of the Department of Commerce's National Institute of Standards and Technology (NIST). Working with Pennsylvania State University, M&M embarked on a technology development project to advance gear measurement capabilities to levels of accuracy never before achieved.

48 Powder Metal Gear Design and Inspection (September/October 1996)

Powder metallurgy (P/M) is a precision metal forming technology for the manufacture of parts to net or near-net shape, and it is particularly well-suited to the production of gears. Spur, bevel and helical gears all may be made by made by powder metallurgy processing.

49 Recent Developments in Gear Metrology (November/December 1991)

Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.

50 Noise Reduction in Plastic & Powder Metal Gear Sets (July/August 1996)

The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.

51 Measurement Error Induced by Measuring over Pins Instead of Balls (January/February 1996)

The purpose of this article is to clarify some terms and methods used in measuring the size of gears. There is also an explanation given of the error induced and how to correct for it in certain cases when the measurement is made using pins instead of balls.

52 Rebuilding a Metrology Infrastructure (January/February 1996)

The American Society of Mechanical Engineers (ASME) announced at Gear Expo '95 that a national service for the calibration of involute artifacts is now available at the Department of Energy's Y-12 Plant in Oak Ridge, TN.

53 The Next Step in Bevel Gear Metrology (January/February 1996)

In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.

54 Little Things Mean A Lot (March/April 1993)

"God is in the details," says the philosopher. What he meant was that on the scale of the universe, it's not just the galaxies, the planets, the mountain ranges, or the major rivers that are important. So are the subatomic particles and the genes. It's the little things that make all the difference.

55 Gear Inspection Chart Evaluation; Specifying Unusual Worm Gear Sets (November/December 1991)

Question: When evaluating charts from a gear inspection machine, it is sometimes found that the full length of the profile traces vary, and that sometimes they are less than the length of active profile (above start of active profile-SAP) by up to 20%. This condition could be caused by a concentricity error between tooth grinding and shaping, or by unequal stock removal when grinding. (See Fig. 1.) Is it possible that some of the variation is coming from the inspection machine? How can variation from the inspection machine be reduced?

56 Gear Inspection For The Long Haul (September/October 1995)

Question: We just received permission to purchase our first CNC gear inspection system. With capital approvals so hard to come by, especially for inspection equipment, I want to be sure to purchase a system I can count of for years to come. My past experience with purchasing CNC equipment has shown me that serviceability of the computer and the CNC controller portion of the system can be a problem in just a few years because of the obsolescence factor. What information do I need to look for when selecting a supplier to reduce the risk of obsolescence, as well as to reduce the long-term servicing costs in the computer and controls portion of the system?

57 How to Avoid Errors When Measuring Step Gears (July/August 1995)

There are problems in dimensional measurement that should be simple to solve with standard measuring procedures, but aren't. In such cases, using accepted practices may result in errors of hundreds of microns without any warning that something is wrong.

58 Effects of Temperature on Gage Repeatability & Reproducibility (May/June 1992)

Temperature Induced Dimensional Changes Temperature causes various materials to change size at different rate, known as their Coefficients of Expansion (COE). The effects of this phenomenon on precision dimensional measurements are continuous and costly to industry. Precautions can be taken to allow parts and gages to temperature stabilize before conducting gage R & R studies, but the fact remains that on the shop floor temperatures vary all the time. The slow pace at which industry has accepted this reality probably has to do with the subtlety of these tiny size variations and our inability to sense gradual, but significant temperature changes.

59 Gear Inspection and Measurement (July/August 1992)

The purpose of gear inspection is to: Assure required accuracy and quality, Lower overall cost of manufacture by controlling rejects and scrap, Control machines and machining practices and maintain produced accuracy as machines and tools wear, Determine hear treat distortions to make necessary corrections.

60 Quality Gear Inspection - Part II (November/December 1994)

This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.

61 Quality Gear Inspection - Part I (September/October 1994)

Quality gear inspection means doing the "right" inspections "right." A lot of time and money can be spent doing the wrong types of inspections related to function and doing them incorrectly. As we will discover later, such things as runout can creep into the manufacturing and inspection process and completely ruin any piece of data that is taken. this is one of the most important problems to control for quality inspection.

62 A Comparison of ISO 4156-ANSI B92.2M - 1980 With Older Imperial Standards (September/October 1994)

The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.

63 Computerized Hob Inspection & Applications of Inspection Results Part II (July/August 1994)

Flute Index Flute index or spacing is defined as the variation from the desired angle between adjacent or nonadjacent tooth faces measured in a plane of rotation. AGMA defines and provides tolerance for adjacent and nonadjacent flute spacing errors. In addition, DIN and ISO standards provide tolerances for individual flute variation (Fig. 1).

64 Computerized Hob Inspection & Applications of Inspection Results - Part I (May/June 1994)

Can a gear profile generated by the hobbing method be an ideal involute? In strictly theoretical terms - no, but in practicality - yes. A gear profile generated by the hobbing method is an approximation of the involute curve. Let's review a classic example of an approximation.

65 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

66 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

67 Line of Action: Concepts & Calculations (January/February 1993)

In the past gear manufacturers have had to rely on hob manufacturers' inspection of individual elements of a hob, such as lead, involute, spacing, and runout. These did not always guarantee correct gears, as contained elements may cause a hob to produce gears beyond tolerance limits.

68 Gear Quality Inspection: How Good is Yours (June/July 2012)

How well you conduct your inspections can be the difference-maker for securing high-value contracts from your customers. And as with most other segments of the gear industry, inspection continues striving to attain “exact science” status. With that thought in mind, following is a look at the state of gear inspection and what rigorous inspection practices deliver—quality.

69 Gear Fundamentals Reverse Engineering (July/August 1991)

Whether gear engineers have to replace an old gear which is worn out, find out what a gear's geometry is after heat treatment distortion, or just find out parameters of gears made by a competitor, sometimes they are challenged with a need to determine the geometry of unknown gears. Depending on the degree of accuracy required, a variety of techniques are available for determining the accuracy of an unknown gear. If a high degree of precision is important, a gear inspection device has to be used to verify the results. Frequently, several trial-and-error attempts are made before the results reach the degree of precision required.

70 Identification of Gear Noise with Single Flank Composite Measurement (May/June 1986)

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

71 Zoller and Ingersoll Partner for Measuring Hob Cutters (March/April 2011)

With growing markets in aerospace and energy technologies, measuring hob cutters used in gear cutting is becoming an essential requirement for workpieces and machine tools. Zoller, a provider of solutions for tool pre-setters, measuring and inspection machines and tool management software, has developed a new partnership with Ingersoll/Germany for shop floor checking of hob cutters by a combined hardware and software approach.

72 Gear Measuring Machine by NDG Method for Gears Ranging from Miniature to Super-Large (March/April 2011)

A new inspection method has several advantages over traditional methods, especially for very large or very small gears.

73 Dearborn Precision Puts Dual Purpose Zeiss CMM to the Task (May 2011)

When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.

74 An Emphasis on Accuracy (June/July 2011)

Meeting the many challenges of large gear inspection.

75 Benefit of Psychoachoustic Analyzing Methods for Gear Noise Investigation (August 2011)

This article provides an overview of the benefits of using psychoacoustic characteristics for describing gear noise. And with that, human hearing and the most important psychoacoustic values are introduced. Finally, results of noise tests with different gear sets aree presented. The tests are the basis for a correlation analysis between psychoacoustic values and gear characteristics.

76 Not All Good Ideas Are Brand New (September 2011)

A reader clarifies technology presented in the March/April 2011 issue.

77 Flank Breakage on Gears for Energy Systems (November/December 2011)

Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial applications.

78 Single Flank Testing of Gears (May/June 1984)

Presumably, everyone who would be interested in this subject is already somewhat familiar with testing of gears by traditional means. Three types of gear inspection are in common use: 1) measurement of gear elements and relationships, 2) tooth contact pattern checks and 3) rolling composite checks. Single Flank testing falls into this last category, as does the more familiar Double Flank test.

79 Generating and Checking Involute Gear Teeth (May/June 1986)

It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.

80 Checking Large Gears (March/April 1987)

Gear manufacturing schedules that provide both quality and economy are dependent on efficient quality control techniques with reliable measuring equipment. Given the multitude of possible gear deviations, which can be found only by systematic and detailed measuring of the gear teeth, adequate quality control systems are needed. This is especially true for large gears, on which remachining or rejected workpieces create very high costs. First, observation of the gears allows adjustment of the settings on the equipment right at the beginning of the process and helps to avoid unproductive working cycles. Second, the knowledge of deviations produced on the workpiece helps disclose chance inadequacies on the production side: e.g., faults in the machines and tools used, and provides an opportunity to remedy them.

81 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

82 Effects of Hob Quality and Resharpening Errors on Generating Accuracy (September/October 1987)

The modern day requirement for precision finished hobbed gears, coupled with the high accuracy characteristics of modern CNC hobbing machines, demands high tool accuracy.

83 The Interrelationship of Tooth Thickness Measurements as Evaluated by Various Measuring Techniques (September/October 1987)

The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.

84 Selection of a Proper Ball Size to Check an Involute Spur or Helical Cear Tooth (September/October 1987)

A much-used method for checking the tooth thickness of an involute gear tooth is to measure the dimension over two balls placed in most nearly opposite spaces in the case of external gears, and the dimension between the balls in the case of internal gears. This measurement is then checked against a pre-calculated dimension to denote an acceptable part.

85 Contact Surface Topology of Worm Gear Teeth (March/April 1988)

Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.

86 Gear Span Measurement - An Analytical Approach (May/June 1989)

The purpose of this article is to describe an analytical method free of the drawbacks mentioned above and providing absolutely reliable results.

87 White Etching Areas on Case-Hardened Gears (September/October 1989)

The phenomenon of white layers, which arises from high stress, can be observed under a microscope after the white layers have been treated with a weak nitric acid solution. Their occurrences in zones of high shear stress can provide qualitatively valuable indications of the size and direction of the stress, and they can point out possible starting points for flank damage. An investigation of this phenomenon is described.

88 Tomorrow's Gear Inspection Systems: Arriving Just in Time (June/July 2012)

Gleason's GMS analytical gear inspection systems provide all the right features at Eaton Corp.

89 Obtaining Meaningful Surface Roughness Measurements on Gear Teeth (July/August 1997)

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

90 Runout, Helix Accuracy and Shaper Cutters (June/July 2012)

Our experts discuss runout and helix accuracy, as well as the maximum number of teeth in a shaper cutter.

91 Towards an Improved AGMA Accuracy Classification System on Double-Flank Composite Measurements (June/July 2012)

AGMA introduced ANSI/AGMA 2015–2–A06— Accuracy Classification System: Radial System for Cylindrical Gears, in 2006 as the first major rewrite of the double-flank accuracy standard in over 18 years. This document explains concerns related to the use of ANSI/AGMA 2015–2–A06 as an accuracy classification system and recommends a revised system that can be of more service to the gearing industry.

92 Involute Inspection Methods and Interpretation of Inspection Results (July/August 1997)

What is so unique about gear manufacturing and inspection? Machining is mostly associated with making either flat or cylindrical shapes. These shapes can be created by a machine's simple linear or circular movements, but an involute curve is neither a straight line nor a circle. In fact, each point of the involute curve has a different radius and center of curvature. Is it necessary to go beyond simple circular and linear machine movements in order to create an involute curve? One of the unique features of the involute is the fact that it can be generated by linking circular and linear movements. This uniqueness has become fertile soil for many inventions that have simplified gear manufacturing and inspection. As is the case with gear generating machines, the traditional involute inspection machines take advantage of some of the involute properties. Even today, when computers can synchronize axes for creating any curve, taking advantage of involute properties can be very helpful. I t can simplify synchronization of machine movements and reduce the number of variables to monitor.

93 Girth Gear Inspection - Pre- and Post-Manufacture (August 2013)

What are the ins-and-outs of quality inspection of girth gears, from both a manufacturer and buyer perspective? Our experts respond.

94 Worm Gear Measurement (September/October 1997)

Several articles have appeared in this publication in recent years dealing with the principles and ways in which the inspection of gears can be carried out, but these have dealt chiefly with spur, helical and bevel gearing, whereas worm gearing, while sharing certain common features, also requires an emphasis in certain areas that cause it to stand apart. For example, while worm gears transmit motion between nonparallel shafts, as do bevel and hypoid gears, they usually incorporate much higher ratios and are used in applications for which bevel would not be considered, including drives for rotary and indexing tables in machine tools, where close tolerance of positioning and backlash elimination are critical, and in situations where accuracy of pitch and profile are necessary for uniform transmission at speed, such as elevators, turbine governor drives and speed increasers, where worm gears can operate at up to 24,000 rpm.

95 Measuring Left and Right (July 2017)

CMM Inspection vs. GMM Inspection. Speed is the name of the game.

96 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part I (January/February 2014)

Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

97 Practical Considerations for the Use of Double-Flank Testing for the Manufacturing Control of Gearing - Part II (March/April 2014)

Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

98 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

99 Portable Gear Inspection (July 2014)

Compact, custom and portable solutions are gaining more attention in manufacturing today as companies seek out the tools that offer the greatest productivity gains on the shop floor. Gear inspection seems to be following suit.

100 Measuring Residual Stress in Gears (March/April 2015)

I have heard that X-ray diffraction does not tell the whole story and that I should really run a fatigue test. I understand this may be the best way, but is there another method that gives a high degree of confidence in the residual stress measurement?

101 Gear Inspection in a Shop Floor Environment (July 2015)

As in nearly all industries, more costeffective solutions are currently called for in the gear manufacturing industry.

102 I Like Big Gears and I Cannot Lie! (July 2015)

Many years ago, when asked how the five-meter gear was checked, the quality manager responded, “When they’re that big, they’re never bad!” That may have been the attitude and practice in the past, but it no longer serves the manufacturer nor the customer. Requirements have been evolving steadily, requiring gears to perform better and last longer.

103 The Wait is Over for Lab-Level Shop Floor Inspection (July 2016)

Schafer Gear Works greatly reduces gear inspection queue time and adds precious capacity by installing Gleason's new "shop-hardened" 300GMS P gear inspection system.

104 A Proposed Pre-Finish Cylindrical Gear Quality Standard (September/October 2016)

This proposed standard would not make any recommendations regarding the required quality for any application. The intent is to establish standard pre-finish quality classes for typical finishing operations, which only include the inspection elements that are important to properly evaluate pre-finish gear quality as it applies to the finishing operation. It would be the responsibility of the manufacturing/process engineer, quality engineer, or other responsible individual to establish the required pre-finish quality class for their application.

105 Gear Inspection at Light Speed (July 2017)

Revolutionary new inspection technologies are helping gear manufacturers develop and produce more complex, higher quality gears in a fraction of the time it used to take.

106 GT Extras (January/February 2014)

Video from C&B Machinery; Introducing the Gear Technology Blog, featuring technical editor Charles D. Schultz; plus an online-exclusive article on big gear inspection.

107 Frenco REANY Gear Inspection Software Melds Data from Multiple Sources (March/April 2018)

REANY is software for the evaluation of gears and splines that have been measured completely on all teeth. It is suited to both quality assessment and analyzing the causes for deviations. REANY is short for Reality Analysis.

108 Industry News (March/April 2018)

Germany adopts ISO 1328 standard for the measurement of gears, plus other news and announcements from around the industry.

109 Overlapping Pursuits (July 2018)

More than any other field, IIoT overlaps directly with metrology's mission to analyze and measure as much of the manufacturing process as possible, and it's no surprise that the latter is utilizing the former.

110 In-Process, Complete Gear Inspection at Light Speeds (July 2018)

New GRSL technology adds value to high-volume transmission gear inspection by combining non-contact laser inspection with tried-and-true composite roll testing.

111 Inspection System Upgrades Meet EV Gear Challenges (July 2018)

Delta Research upgrades its Gleason Metrology Workhorses to meet the development requirements of the latest electrical drive vehicles.

112 Complete Measurement of Gearbox Components (July 2018)

In today's production environment, a variety of different measurement devices is used to assess the quality and accuracy of workpieces. These devices include CMMs, gear checkers, form testers, roughness testers, and more. It requires a high machine investment and a high handling effort - especially if a full end-of-line measurement is needed. One approach to reduce quality costs is to include all measurements in one single machine that is suitable and robust enough for use in production.

113 Measurement Management (July 2019)

The secret to meeting today's inspection demands is influenced by the technology and those in charge of operating it.

114 Gear Noise Analysis: Design and Manufacturing Challenges Drive New Solutions for Noise Reduction (July 2019)

Gear noise is among the issues of greatest concern in today's modern gearboxes. Significant research has resulted in the application of enhancements in all phases of gear manufacturing, and the work is ongoing. With the introduction of Electric Vehicles (EV), research and development in this area has surged in recent years. Most importantly, powerful new noise analysis solutions are fast becoming available.

115 Tooth Thickness Tolerance and AGMA 2002-C16 (July 2019)

A reader asks: We are currently revising our gear standards and tolerances and a few questions with the new standard AGMA 2002-C16 have risen. Firstly, the way to calculate the tooth thickness tolerance seems to need a "manufacturing profile shift coefficient" that isn't specified in the standard; neither is another standard referred to for this coefficient. This tolerance on tooth thickness is needed later to calculate the span width as well as the pin diameter. Furthermore, there seems to be no tolerancing on the major and minor diameters of a gear.

116 Fully Automated Roughness Measurement on Gears — Even on the Shop Floor (July 2019)

Klingelnberg presents the technical aspects of its roughness measurement system.

117 Super-Sized Quality Control (January/February 2014)

It's not easy being big. Maybe that's not exactly how the phrase goes, but it's applicable, particularly when discussing the quality requirements of large gears. The size alone promises unique engineering challenges. BONUS Online Exclusive: Big or Small - Inspection is Key to Success.

118 Gear Standards and ISO GPS (October 2013)

In today’s globalized manufacturing, all industrial products having dimensional constraints must undergo conformity specifications assessments on a regular basis. Consequently, (standardization) associated with GD&T (geometrical dimensioning and tolerancing) should be un-ambiguous and based on common, accepted rules. Of course gears - and their mechanical assemblies - are special items, widely present in industrial applications where energy conversion and power transmission are involved.

119 Thermal Effects on CMMs (September/October 1997)

The trend toward moving coordinate measuring machines to the shop floor to become an integral part of the manufacturing operations brings real time process control within the reach of many companies. Putting measuring machines on the shop floor, however, subjects them to harsh environmental conditions. Like any measuring system, CMMs are sensitive to any ambient condition that deviates from the "perfect" conditions of the metrology lab.

120 Inspection Focus News & Technology (July/August 2000)

This section is dedicated to what's new and what's happening in the world of gear inspection and metrology. Here you will find news about products, companies and organizations, services and events affecting the gear inspection and metrology industry.

121 Automated Inspection Systems: The Whole Picture (January/February 1998)

No one (not even you and I) consistently makes parts with perfect form and dimensions, so we must be able to efficiently check size and shape at many stages in the manufacturing and assembly process to eliminate scrap and rework and improve processes and profits. Automated inspection systems, which are widely used in all kinds of manufacturing operations, provide great efficiencies in checking individual features, but may not be as effective when asked to evaluate an entire part. You need to know why this is true and what you can do to improve your part yields.

122 Gear Teeth With Byte (January/February 1998)

Computers are everywhere. It's gotten so that it's hard to find an employee who isn't using one in the course of his or her day - whether he be CEO or salesman, engineer or machinist. Everywhere you look, you find the familiar neutral-colored boxes and bright glowing screens. And despite the gear industry's traditional reluctance to embrace new technology, more and moe of what you find on those screens are gears.

123 Programmable Separation of Runout From Profile and Lead Inspection Data for Gear Teeth With Arbitrary Modifications (March/April 1998)

A programmable algorithm is developed to separate out the effect of eccentricity (radial runout) from elemental gear inspection date, namely, profile and lead data. This algorithm can be coded in gear inspection software to detect the existence, the magnitude and the orientation of the eccentricity without making a separate runout check. A real example shows this algorithm produces good results.

124 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

125 The Basics of Gear Metrology and Terminology Part II (November/December 1998)

In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.

126 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

127 Gear Measurement Traceability and Uncertainty (July/August 2000)

Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.

128 Analytical Gear Inspection: The Shape of Things to Come (July/August 2000)

It used to be that gear manufacturers wanting to perform analytical gear inspection required at least three machines to do so: The lead measuring instrument, the tooth space comparator and the involute checking instrument. In the beginning, these machines were mechanically driven. Over the years, the manufacturers of analytical gear inspection equipment have combined these functions - and a host of others.

129 Ferrography: A Noninvasive Method to Inspect Your Gears (July/August 2000)

Would you like to be able to see the condition of the gears in your transmissions without having to open the box and physically examine them? There is a way, and not too many people know about it. It's called Wear Particle Analysis, or ferrography, and it is just starting to get noticed.

130 Measuring Base Helix Error on a Sine Bar (July/August 2001)

Base helix error - the resultant of lead and profile errors is the measured deviation from the theoretical line of contact (Fig. 1). It can be measured in the same way that lead error on a spur gear is measured, namely, by setting a height gage to height H based on the radial distance r to a specified line of contact (Fig. 2), rotating the gear so as to bring a tooth into contact with the indicator on the height gage, and then moving the height gage along two or more normals to the plane of action. The theoretical line of contact on helical gear must be parallel to the surface plate, which is attained by mounting the gear on a sine bar (Fig. 3).

131 How to Inspect a Gearbox (September 2013)

Although a comprehensive on-site gearbox inspection is desirable in many situations, there may be constraints that limit the extent of the inspection such as cost, time, accessibility and qualified personnel. This article describes the equipment and techniques necessary to perform an on-site gearbox inspection.

132 Performance Analysis of Hypoid Gears by Tooth Flank Form Measurement (July/August 2002)

The traditional way of controlling the quality of hypoid gears' tooth flank form is to check the tooth flank contact patterns. But it is not easy to exactly judge the tooth flank form quality by the contact pattern. In recent years, it has become possible to accurately measure the tooth flank form of hypoid gears by the point-to-point measuring method and the scanning measuring method. But the uses of measured data of the tooth flank form for hypoid gears have not yet been well developed in comparison with cylindrical involute gears. In this paper, the tooth flank form measurement of generated face-milled gears, face-hobbed gears and formulate/generated gears are reported. The authors discuss the advantages and disadvantages of scanning and point-to-point measuring of 3-D tooth flank forms of hypoid gears and introduce some examples of uses of measured data for high-quality production and performance prediction.

133 Measuring Profile and Base Pitch Error with a Micrometer (September/October 2002)

In this article, equations for finding profile and base pitch errors with a micrometer are derived. Limitations of micrometers with disc anvils are described. The design of a micrometer with suitable anvils is outlined.

134 The Barkhausen Noise Inspection Method for Detecting Grinding Damage in Gears (November/December 2002)

When hardened steel components are ground, there is always the possibility of damage to the steel in the form of residual stress or microstructural changes. Methods for detecting this sort of damage have always had one or more drawbacks, such as cost, time, complexity, subjectivity, or the use of hazardous chemicals.

135 CMM Gear Inspection (January/February 2013)

Mitutoyo offers capable, affordable and flexible gear inspection option via coordinate measuring machines and gear inspection software.

136 Measurement of Involute Master (January/February 2013)

Our experts tackle the topic of measuring involute masters, including both master gears and gear inspection artifacts.

137 Liebherr Touts Technology at Latest Gear Seminar (June/July 2013)

For two days in Saline, Michigan, Liebherr's clients, customers and friends came together to discuss the latest gear products and technology. Peter Wiedemann, president of Liebherr Gear Technology Inc., along with Dr.-Ing. Alois Mundt, managing director, Dr.-Ing. Oliver Winkel, head of application technology, and Dr.-Ing. Andreas Mehr, technology development shaping and grinding, hosted a variety of informative presentations.

138 Leading the Way in Lead Crown Correction and Inspection (August 2013)

Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…

139 Turbine Gearbox Inspection - Steady Work in a Shaky Wind Market (August 2013)

Having outlasted the worldwide Great Recession, the Global Wind Energy Council (GWEC) forecasts a constant growth in wind energy, i.e.: "increase in worldwide capacity to 460,000 MW by 2015."

140 Cotta Transmission Installs CMM with Gear Checking Module (July 2010)

Xspect Solutions Provides Wenzel Bridge-Type CMM Equipped with OpenDMIS Software for Basic Gear Measuring Capability with CMM Flexibility.

141 New Standards for Large Ring Gears for Mills, Kilns (September 2013)

Methods of examining large ring gear teeth to detect surface breaking discontinuities have often been time-consuming and limited in terms of data collected. Methods such as visual and magnetic particle inspection can miss critical discontinuities. However, a new ASTM international standard provides a more effective method for gear examination using eddy current array, a technology that has been widely used but, until now, not standardized.

142 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

143 Industry News (May 2019)

The complete Industry News section from the May 2019 issue of Gear Technology.

144 User-Friendly Gear Measurement (July 2010)

Good timing leads to partnership between Process Equipment and Schafer Gear.

145 Hob Basics Part II (November/December 1993)

This is Part II of a two-part series on the basics of gear hobbing. Part I discussed selection of the correct type of hobbing operation, the design features of hobs and hob accuracy. This part will cover sharpening errors and finish hob design considerations.

146 Steadfast and Streamlined: Can Lean Soften the Economic Blow (August 2009)

Two high-volume gear production cells grace the shop floor at Delta Research Corporation in Livonia, Michigan. Thanks to lean manufacturing, these cells have never shipped a defective part to a customer since they were developed over three years ago.

147 All-in-One Broaching Capability (January/February 2010)

Faster, more efficient manufacturing offered with table-top design from American Broach & Machine.

148 Software-Based Process Design in Gear Finish Hobbing (May 2010)

In this paper, the potential for geometrical cutting simulations - via penetration calculation to analyze and predict tool wear as well as to prolong tool life - is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.

149 Carl Zeiss CMM Guides Andrew Tool with Complex Mars Rover Project (March/April 2011)

At Andrew Tool, CMMs have been an integral part of their manufacturing processes for years, but they had never faced a project with such intricate measurements, tight tolerances, heat treatments and a very short time frame requirement.

150 State-of-the-Art Broaching (August 2011)

There are a number of companies working to change the way broaching is perceived, and over the past 10 years, they’ve incorporated significant technological changes to make the process more flexible, productive and accurate.

151 EMO Hannover - More than Machine Tools (October 2011)

Some gear-related highlights from the recent EMO show in Hannover, Germany.

152 Minimum Setup Time, Maximum Machining Capability (November/December 2011)

Hainbuch offers workholding solutions for United Gear.

153 The Right and Wrong of Modern Hob Sharpening (January/February 1992)

Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.

154 Hob Basics Part I (September/October 1993)

The Hobbing Process The hobbing process involves a hob which is threaded with a lead and is rotated in conjunction with the gear blank at a ratio dependent upon the number of teeth to be cut. A single thread hob cutting a 40-tooth gear will make 40 revolutions for each revolution of the gear. The cutting action in hobbing is continuous, and the teeth are formed in one passage of the hob through the blank. See Fig. 1 for a drawing of a typical hob with some common nomenclature.

155 Computers and Automation Lead IMTS Innovations (November/December 1994)

Robots, computers and other signs of high technology abounded at IMTS 94, supporting the claim by many that this was one of the best shows ever. Many of the machines on display had so many robotic attachments and computer gizmos that they looked more like they belonged in some science fiction movie than on the floor of a machine shop.

156 An Innovative Way of Designing Gear Hobbing Processes (May 2012)

In today’s manufacturing environment, shorter and more efficient product development has become the norm. It is therefore important to consider every detail of the development process, with a particular emphasis on design. For green machining of gears, the most productive and important process is hobbing. In order to analyze process design for this paper, a manufacturing simulation was developed capable of calculating chip geometries and process forces based on different models. As an important tool for manufacturing technology engineers, an economic feasibility analysis is implemented as well. The aim of this paper is to show how an efficient process design—as well as an efficient process—can be designed.

157 What to Look For Before You Leap (March/April 1995)

Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?

158 Addendum III - The Return (May/June 1995)

Gear Technology's bimonthly aberration - gear trivia, humor, weirdness and oddments for the edification and amusement of our readers. Contributions are welcome.

159 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

160 New Gear Developments at IMTS (November/December 1996)

The International Manufacturing Technology Show provided one of the biggest ever marketplaces for buying and selling gear-making equipment, with 121601 attenders, making it the largest IMTS ever. The show took place September 4-11 at McCormick Place in Chicago, IL.

161 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

162 The Broaching of Gears (March/April 1997)

Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.

163 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

164 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

165 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

166 Industry News (June/July 2013)

The complete Industry News section from the June/July 2013 issue of Gear Technology.

167 Application of Statistical Stability and Capability for Gear Cutting Machine Acceptance Criteria (November/December 2003)

Machine tool manufacturers supplying machines to the gearing world have been in existence for many years. The machines have changed, and so has the acceptance criteria for the machines.

168 Why do Customers Want to Reinvent OUR Wheel (June 2007)

Over many years of being in the machine tool business, it has been interesting to observe the way we suppliers are forced to quote and sell machine tools to many large companies.

169 EMO 2013 - Intelligence in Production (August 2013)

Preview of some of the exhibits relevant to gear manufacturing at the upcoming EMO 2013.

170 Limitations of Worm and Worm Gear Surfaces in Order to Avoid Undercutting (November/December 1990)

The dimensions of the worm and worm gear tooth surfaces and some of the worm gear drive parameters must be limited in order to avoid gear undercutting and the appearance of the envelope of lines of contact on the worm surface. The author proposes a method for the solution of this problem. The relations between the developed concept and Wildhaber's concept of the limit contact normal are investigated. The results of computations are illustrated with computer graphics.

171 Remedies for Cutting Edge Failure of Carbide Hob due to Chip Crush (November/December 2004)

Some results of evaluation by this method in the automotive industry.

172 American Wera Profilator Introduces Scudding Process (January/February 2008)

Rolled out at EMO 2007, the Scudding process is a continuous cutting operation that uses a tool design similar to a helical shaper cutter. It can be used for a wide range of gear applications...

173 Environmentally Friendly Cutting Fluids (March/April 2005)

Environmentally friendly cutting fluids aren't just good for the environment. They can also be good for performance.

174 The Road Leads Straight to Hypoflex (March/April 2010)

A new method for cutting straight bevel gears.

175 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

176 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

177 Hard Cutting - A Competitive Process in High Quality Gear Production (May/June 1987)

The higher load carrying capacities, compact dimensions and longer life of hardened gears is an accepted fact in industry today. However, the costs involved in case hardening and subsequent finishing operations to achieve these advantages are considerable. For example, in order to achieve desired running properties on larger gears, it has been necessary to grind the tooth flanks. This costly operation can now be replaced, in many cases, by a new Hard Cutting (HC) process which permits the cutting of hardened gears while maintaining extremely low tooling costs.

178 Cutting Fluid Selection and Process Controls for the Gear Manufacturing Industry (July/August 1987)

The last decade has been a period of far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.

179 The Geometric Design of Internal Gear Pairs (May/June 1990)

The paper describes a procedure for the design of internal gear pairs, which is a generalized form of the long and short addendum system. The procedure includes checks for interference, tip interference, undercutting, tip interference during cutting, and rubbing during cutting.

180 Fundamentals of Bevel Gear Hard Cutting (November/December 1990)

Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.

181 Fluid Fundamentals (March/April 2019)

PSP Peugeot Improves Production Process with Blaser Swisslube

182 Cutting Low-Pitch-Angle Bevel Gears, Worm Gears and The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

183 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

184 Environmentally Safe Fluids for Industrial Cutting, Lubrication, & Cleaning (January/February 1993)

Not long ago, many manufacturing managers thought sensitivity to environmental protection standards meant additional expenses, decreased productivity, and a plethora of headaches and hassles.

185 CNC Bevel Gear Generators and Flared Cup Gear Grinding (July/August 1993)

New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.

186 Eco-Friendly Cutting Fluids (May/June 1995)

Okay, so you want to make some high quality gears for your customers, and you want to make a profit for your company, but you don't want to make a mess of the environment. What can you do?

187 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

188 Alternative Gear Manufacturing (July/August 1998)

the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.

189 Dry Machining for Gear Shaping (November/December 2001)

Economic production is one of the main concerns of any manufacturing facility. In recent years, cost increases and tougher statutory requirements have increasingly made cutting fluids a problematic manufacturing and cost factor in metalworking. Depending on the cutting fluid, production process and supply unit, cutting-fluid costs may account for up to 16% of workpiece cost. In some cases, they exceed tool cost by many times (Ref. 1). The response by manufacturers is to demand techniques for dry machining (Ref. 2).

190 On the Cutting Edge (January/February 2015)

Sentences that start off with some variance of “I don’t want to brag, but…” are generally a good indicator that it’s precisely what the speaker intends to do and typically end with bold proclamations that are immediately and eminently quotable — the kind of quotes perfect for beginning a feature story with an eye-catching artistic flourish.

191 Everything-Friendly Lubricants (September/October 2018)

Lubricant experts are doing more than ever to make their products less toxic and harmful to everything from the environment to the people using them — which comes with plenty of extra benefits for productivity, too!

192 Engineering Questions - SME has the Answers with Knowledge Edge (August 2013)

The Society of Manufacturing Engineers (SME) has been gathering, validating and sharing manufacturing knowledge for more than 80 years. Traditionally, SME resources were purchased by individuals for their own personal use or by colleges and universities as textbooks. Recently, these same colleges and universities were looking for digital resources to provide to their instructors and students. Companies were requesting SME content digitally for their employees as well.

193 Industry News (September 2013)

The complete Industry News section from the September 2013 issue of Gear Technology.

194 Large Gears, Better Inspection (July 2010)

Investment in Gleason GMM Series inspection equipment helps drive Milwaukee Gear's expansion into profitable new markets around the world—all hungry for high-precision custom gears and gear drives.

195 Gear Failure Analysis Involving Grinding Burn (January/February 2009)

When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing process when control of the heat generation at the surface is lost.

196 Industry News (March/April 2019)

The complete Industry News section from the March/April 2019 issue of Gear Technology.

197 Identifying Equipment Failure (June 2019)

How machine tool maintenance has evolved in recent years in gear manufacturing.

198 Industry News (June 2019)

The complete Industry News section from the June 2019 issue of Gear Technology./

199 Industry News (July 2019)

The complete Industry News section from the July 2019 issue of Gear Technology.

200 Better Gears & Splines With Metrology (July 2007)

What does it mean to make "better" gears? Better gears more closely resemble the intended design parameters.

201 Single Flank Data Analysis and Interpretation (September/October 1985)

Much of the information in this article has been extracted from an AGMA Technical Paper, "What Single Flank Testing Can Do For You", presented in 1984 by the author

202 Industry Forum (September/October 1985)

Your May/June issue contains a letter from Edward Ubert of Rockwell International with some serious questions about specifying and measuring tooth thickness.

203 Single-Flank Testing of Gears (May/June 2004)

This article was originally published 20 years ago, in Gear Technology’s first issue. It describes a method of evaluating the smoothness, or lack of smoothness, of gear motion. This lack of smoothness of motion, known as “transmission error,” is responsible for excitation of gear noise and problems of gear accuracy and sometimes has a relationship to gear failure.

204 Revolutions (May/June 2004)

"Frenco--Inspecting All Flanks in Minutes."

205 Gear Inspection and Chart Interpretation (May/June 1985)

Much information has been written on gear inspection, analytical. functional. semiautomatic and automatic. In most cases, the charts, (if you are lucky enough to have recording equipment) have been explained.

206 Human Machine Interface (HMI) in Gear Manufacturing (June 2018)

"Documentation is not a Substitute for an Intuitive Interface." The author explores the development of modern controls for a CNC gear grinding machine.

207 Practical Magic - Metrology Products Keep Pace with Machine Technology (July 2009)

Gear metrology is a revolving door of software packages and system upgrades. It has to be in order to keep up with the productivity and development processes of the machines on the manufacturing floor. Temperature compensation, faster inspection times and improved software packages are just a few of the advancements currently in play as companies prepare for new opportunities in areas like alternative energy, automotive and aerospace/defense.

208 New ANSI-AGMA Accuracy Standards for Gears (March/April 2004)

AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.

209 Extending the Benefits of Elemental Gear Inspection (July 2009)

It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.

210 Characteristics of Master Gears (November/December 2006)

The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.

211 A Novel Concept for High Accuracy Gear Calibration (May/June 2005)

The German National Metrology Institute has developed a novel calibration concept that allows for highly accurate calibration of product-like artifacts.

212 Calibration of Two-Flank Roll Testers (May 2008)

The presence of significant errors in the two-flank roll test (a work gear rolled in tight mesh against a master gear) is well-known, but generally overlooked.

213 Update on the National Center for Gear Metrology (May 2008)

The status on traceability of gear artifacts in the United States.

214 Innovative Analysis and Documentation of Gear Test Results (September/October 2008)

In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate, cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.

215 Implementing ISO 18653-Gears: Evaluation of Instruments for Measurement of Individual Gears (May 2010)

A trial test of the calibration procedures outlined in ISO 18653—Gears: Evaluation of Instruments for the Measurement of Individual Gears, shows that the results are reasonable, but a minor change to the uncertainty formula is recommended. Gear measuring machine calibration methods are reviewed. The benefits of using workpiece-like artifacts are discussed, and a procedure for implementing the standard in the workplace is presented. Problems with applying the standard to large gear measuring machines are considered and some recommendations offered.

216 Improved Inspection Software Helps Provide Optimum Cutting Results (July 2010)

Klingelnberg measuring centers eliminate trial-and-error with modern analysis tools.

217 Industry News (November/December 2018)

The complete Industry News section from the November/December 2018 issue of Gear Technology.

218 Industry News (May 2018)

The complete industry news section from the May 2018 issue of Gear Technology.

219 Industry News (November/December 2013)

The complete Industry News section from the November/December 2013 issue of Gear Technology.

220 Product News (June 2016)

News about the Latest Products

221 Moving Parts (May 2014)

Machine tools boost speed and throughput with automation technology.

222 Product News (July 2014)

The complete Product News section from the July 2014 issue of Gear Technology.

223 Product News (November/December 2014)

The complete Product News section from the November/December 2014 issue.

224 Product News (January/February 2015)

Product news from the Gear Industry

225 Industry News (August 2015)

News from around the Gear Industry

226 Industry News (September/October 2015)

News from the Gear Industry

227 Product News (January/February 2016)

Latest news about the Latest Products

228 Industry News (January/February 2016)

Latest new from the Gear Industry

229 Product News (March/April 2016)

News about the latest products in the industry.

230 Industry News (June 2016)

News From Around the Gear Industry

231 A Look at Intelligent Workholding and Toolholding (March/April 2018)

New Solutions Aim at Reducing Changeover Times and Improving Reliability

232 Product News (January/February 2017)

News about all of the upcoming products int he industry.

233 Industry News (March/April 2017)

Educational initiatives, company news, acquisitions and people in the industry are all featured this issue.

234 Product News (June 2017)

The complete Product News section from the June 2017 issue of Gear Technology, featuring the latest from Liebherr, Heller, Sandvik Coromant, Mahr and more.

235 Anatomy of a Rebuild (June 2017)

Nuttall Gear taps Machine Tool Builders for shop floor upgrades.

236 Product News (August 2017)

The latest new products from EMAG, Emuge, Ransohoff, Seco Tools, Solar Atmospheres and more.

237 Industry News (August 2017)

Results from the 2017 Powder Metallurgy Design Excellence Awards, plus other news from around the industry.

238 Gear Expo 2017 and ASM Heat Treat 2017 Booth Previews (September/October 2017)

The latest technology on display in Columbus, OH. October 24-26.

239 Industry News (November/December 2017)

Gear Technology hosts dinner for technical contributors to the gear industry during this year's AGMA Fall Technical Meeting and Gear Expo in Columbus, OH. Plus other news from around the industry.

240 Analysis of the Influence of the Working Angles on the Tool Wear in Gear Hobbing (January/February 2018)

A calculation method is developed to estimate tool wear on hobs.

241 Industry News (January/February 2018)

Fraunhofer CMI focuses on new U.S. gear and transmission technologies group, plus other news from around the industry.

242 Microgear Measurement Standards: Comparing Tactile, Optical and Computed Tomography Measurements (August 2019)

PTB's two microgear measurement standards and their analyses using seven measurement methods which are then presented, evaluated and compared with each other.