film thickness - Search Results

Articles About film thickness

Articles are sorted by RELEVANCE. Sort by Date.

1 On the Correlation of Specific Film Thickness and Gear Pitting Life (January/February 2015)

The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive data set. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures.

2 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

3 Systematic Investigations on the Influence of Viscosity Index Improvers on EHL Film Thickness (November/December 2001)

Mineral-oil-base lubricants show a significant decrease of kinematic viscosity with rising temperature, as exemplified in Figure 1 by lubricants for vehicle gears. An important attribute of lubricants is their viscosity index (VI), according to DIN/ISO 2909 (Ref. 4). Viscosity index is a calculated coefficient, which characterizes the change of viscosity of lubricants as a function of temperature. A high viscosity index represents a low variation of viscosity due to temperature and vice versa. A low viscosity-temperature-dependence is required for lubricants that are operated at significantly varying temperature conditions, such as vehicle engine and gear lubricants in summer and winter time. This way, the oils remain flowing and pumpable at low temperatures on the one hand; and on the other hand, sufficiently thick lubricant films can be formed at higher temperatures for a safe separation of the surfaces.

4 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

5 Optimal Modifications on Helical Gears for Good Load Distribution and Minimal Wear (June 2015)

Helical gear teeth are affected by cratering wear — particularly in the regions of low oil film thicknesses, high flank pressures and high sliding speeds. The greatest wear occurs on the pinion — in the area of negative specific sliding. Here the tooth tip radius of the driven gear makes contact with the flank of the driving gear with maximum sliding speed and pressure.

6 The Lubrication of Gears - Part II (May/June 1991)

What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.

7 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

8 Transient EHL Analysis of Helical Gears (August 2016)

This paper addresses the lubrication of helical gears - especially those factors influencing lubricant film thickness and pressure. Contact between gear teeth is protected by the elastohydrodynamic lubrication (EHL) mechanism that occurs between nonconforming contact when pressure is high enough to cause large increases in lubricant viscosity due to the pressure-viscosity effect, and changes of component shape due to elastic deflection. Acting together, these effects lead to oil films that are stiff enough to separate the contacting surfaces and thus prevent significant metal-to-metal contact occurring in a well-designed gear pair.

9 Quality Gear Inspection - Part I (September/October 1994)

Quality gear inspection means doing the "right" inspections "right." A lot of time and money can be spent doing the wrong types of inspections related to function and doing them incorrectly. As we will discover later, such things as runout can creep into the manufacturing and inspection process and completely ruin any piece of data that is taken. this is one of the most important problems to control for quality inspection.

10 Quality Gear Inspection - Part II (November/December 1994)

This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.

11 A Look at Mechanical Principles (November/December 2019)

Photographer/filmmaker Ralph Steiner made poetry out of a simple short film on machine components in the 1930s

12 Helical Gear Systems (August 2016)

In terms of the tooth thickness, should we use the formulation with respect to normal or transverse coordinate system? When normalizing this thickness in order to normalize the backlash (backlash parameter), we should divide by the circular pitch. Thus, when normalizing, should this circular pitch be defined in the normal or traverse coordinate system, depending on which formulation has been used? Is the backlash parameter always defined with respect to the tangential plane or normal plane for helical gears?

13 Selecting the Right Tooth Thickness (June 2018)

A reader asks: We are currently revising our gear standards and tolerances, and a few problems with the new standard AGMA 2002-C16 have arisen. Firstly, the way to calculate the tooth thickness tolerance seems to need a "manufacturing profile shift coefficient" that isn't specified in the standard; neither is another standard referred to for this coefficient. This tolerance on tooth thickness is needed later to calculate the span width as well as the pin diameter. Furthermore, there seems to be no tolerancing on the major and minor diameters of a gear.

14 Tooth Thickness Tolerance and AGMA 2002-C16 (July 2019)

A reader asks: We are currently revising our gear standards and tolerances and a few questions with the new standard AGMA 2002-C16 have risen. Firstly, the way to calculate the tooth thickness tolerance seems to need a "manufacturing profile shift coefficient" that isn't specified in the standard; neither is another standard referred to for this coefficient. This tolerance on tooth thickness is needed later to calculate the span width as well as the pin diameter. Furthermore, there seems to be no tolerancing on the major and minor diameters of a gear.

15 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

16 The Interrelationship of Tooth Thickness Measurements as Evaluated by Various Measuring Techniques (September/October 1987)

The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.

17 Measuring Pitch Diameter (September/October 2005)

Wait a minute, we don't measure pitch diameter. We're sometimes asked to measure it by customers, though, especially ones with older drawings.

18 Characteristics of Master Gears (November/December 2006)

The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.

19 Assembling Spiral Gears: Double Taper Can Be Double Trouble (January/February 2006)

Bevel gear systems are particularly sensitive to improper assembly. Slight errors in gear positioning can turn a well-designed, quality manufactured gear set into a noisy, prone-to-failure weak link in your application.

20 Industry Forum (September/October 1985)

Your May/June issue contains a letter from Edward Ubert of Rockwell International with some serious questions about specifying and measuring tooth thickness.

21 Stress of Planet Gears with Thin Rims (March/April 1994)

This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.