gear blanks - Search Results

Articles About gear blanks

Articles are sorted by RELEVANCE. Sort by Date.

1 Material Assets (November/December 2017)

You get one shot to make a first impression. One opportunity to show your customers, vendors and suppliers that you provide a steady, reliable product that will generate repeat business. How do you make this happen? What tools and strategies are available to get gear materials (forgings, gear blanks, etc.) shipped faster and more efficiently in today's tech-heavy, fast-paced, manufacturing environment?

2 Improved Broaching Steel Technology (July 2016)

Broaching is a machining technique commonly used to cut gear teeth or cam profiles for the high volume manufacture of power transmission parts used in vehicles (Refs. 1–2). This article shows how the right gear blank material can make all the difference if you want to get more parts out of each tool.

3 Revolutions (January/February 2004)

"Magnetic Filtration" and "Better Blanking from Bar-Stock"

4 Solving the Forgings Paradox (March/April 2015)

The process of forging metal into shapes possesses a surprisingly long and storied history. For example, the method of hot rolling can trace its protracted existence all the way back to an enigmatic Italian polymath named Leonardo da Vinci (you may have heard of him), who reportedly invented the rolling mill one lazy day in the 1400s.

5 Gear Blanking (May/June 1992)

The term "blanking" refers to the initial metal cutting operations in the process planning sequence which produce the contour of a part starting from rough material. The scope of blanking is: To remove the excess material To machine the part to print specifications, except for those surfaces with subsequent finishing operations. To leave adequate machining stock for finishing operations. To prepare good quality surfaces for location and clamping of the part throughout the process.

6 Good Gears Start With Good Blanks (November/December 1987)

The quality of the finished gear is influenced by the very first machining operations of the blank. Since the gear tooth geometry is generated on a continuously rotating blank in hobbing or shaping, it is important that the timed relationship between the cutter and workpiece is correct. If this relationship is disturbed by eccentricities of the blank to its operating centerline, the generated gear teeth will not be of the correct geometry. During the blanking operations, the gear's centerline and locating surfaces are established and must be maintained as the same through the following operations that generate the gear teeth.

7 The Effect of Flexible Components on the Durability, Whine, Rattle and Efficiency of an Automotive Transaxle Geartrain System (November/December 2009)

Gear engineers have long recognized the importance of considering system factors when analyzing a single pair of gears in mesh. These factors include important considerations such as load sharing in multi-mesh geartrains and bearing clearances, in addition to the effects of flexible components such as housings, gear blanks, shafts and carriers for planetary geartrains. However, in recent years, transmission systems have become increasingly complex—with higher numbers of gears and components—while the quality requirements and expectations in terms of durability, gear whine, rattle and efficiency have increased accordingly.